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In the supplementary material, we present the analysis of
semantic boundary accurary in Section 1. In section 2, we
evaluate the oracle performance on NYUDv2 40-class task
with our spatio-temporal data-driven pooling. In section 3,
we analyze the groundtruth annotations of the NYUDv2 40-
class task. In section 4, we provide the qualitative results of
the semantic segmentation results of the NYUDv2 4-class
and 13-class tasks. In section 5, we provide more qualita-
tive examples of the semantic segmentation results of the
NYUDv2 40-class task. In section 6, we show some failure
cases which do not achieve better performance than FCN.

1. Analysis of semantic segmentation boundary
accuracy

In order to quantify the improvement on semantic bound-
ary localization based on the proposed data-driven pool-
ing scheme, we use Boundary Precision Recall (BPR), as
also used in image or video segmentation benchmark [1, 2]
for evaluation. Figure 1 shows the resulting semantic
boundary average precision-recall curve. We conclude that
our method generates more accurate boundaries than FCN,
which achieve 0.477 BPR score while our method achieves
0.647. Besides, our method even improves on the super-
pixel [3] we build on, which means our method can success-
fully merge over-segmentations or non-semantic boundaries
between adjacent instances of the same semantic class.

2. Oracle performance using groundtruth la-
bels

We perform two best-case analysis by computing an or-
acle performance where groundtruth labels are available for
either reference or target frames. The first row of Table 1
shows the achievable performance by performing a major-
ity vote of the groundtruth pixel labels on the employed su-
perpixels from [3]. Thereby we achieve an upper bound
of 96.2% on the pixel accuracy that is implied by the su-

Figure 1: Precision-recall curve on semantic boundaries on
the NYUDv2 dataset.

Table 1: The performance of oracle case using groundtruth
to label the regions.

Groundtruth Pixel Acc. Mean Acc. Mean IoU f. w. IoU

Current Frame 96.2 94.0 90.2 92.7
Next Frame 84.7 76.2 63.4 74.4

perpixel over-segmentation. In order to evaluate the effec-
tiveness of our region correspondence, we use groundtruth
labels of reference frames in the sequence. We collect
143 views to conduct this experiment in NYUDv2, which
have corresponding regions in target frames. We ignore
regions without correspondence in the next frame to com-
pute the quantitative results, which are presented in Table 1.
This best-case analysis for correspondence results in a pixel
accuracy of 84.7%. Both oracle performances indicate a
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strong potential for performance improvements in our setup
in all 4 reported measures.

3. Groundtruth analysis
At a closer look, it turns out that at least part of the per-

formance loss in the best-case analysis for the correspon-
dence is not due to bad matches between regions. In Fig.
2, we present some examples of the annotations provided in
the dataset. In several cases, as the ones shown in the figure,
the labeling is inconsistent and object labels are changed
during the sequence. From left to right in Fig. 2, table
changes to desk, table changes to dresser, floor changes to
floor mat, bookshelf changes to shelves, cabinet changes
to other-furniture, and window changes to blinds. Conse-
quently, we see mistakes in the last two rows corresponding
to the best case results due to inconsistent labelings.

4. Qualitative results on NYUDv2 4-class and
13-class task

We provide the qualitative results of 4-class and 13-class
tasks of NYUDv2 dataset in Figure 3 and Figure 4 respec-
tively.

5. Qualitative results on NYUDv2 40-class task
We provide more qualititative results in the following

figures. We pick up some major scene categories from the
test set including bedroom (Figure 5), living room (Figure
6), dining room (Figure 7), kitchen (Figure 8), bathroom
(Figure 9), office (Figure 10) and classroom (Figure 11).

6. Failure cases
In this section, we present some failure cases of our

methods in Figure 12. In those views, our method does
not achieve better result. In the first two rows, we cannot
segment the regions marked with white bounding box. This
is because the superpixel in this two views cannot success-
ful segment the regions. We use the same parameter for all
views, so it fails to provide good superpixels for our sys-
tem, but we believe that it is not difficult to get better su-
perpixels for those failure views by adjusting the parameter
of superpixel. In the third and fourth rows, we recognize
the region as “cabinet” and “floormat” while groundtruth
are “dresser” and “floor”, which are also difficult for human
beings to classify. In the last two rows, we show some chal-
lenges, which make our system fail to correctly recognize
the region.
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Figure 2: Example of groundtruth limitation and segmentation results of oracle case. Row 3 and 2 draw color images of
target frame and next labeled frame, respectively. And row 4 and 1 draw their groundtruth. The segmentation result with
groundtruth of target frame is shown in row 5, and the result with groundtruth of next frame is shown in row 6. We point out
the regions in different frames with white bounding box, which are the same object of different views but labeled as different
classes.
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Figure 3: Semantic segmentation results of 4-class task on NYUDv2.
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Figure 4: Semantic segmentation results of 13-class task on NYUDv2.



Image GT CRF-RNN DeepLab-LargeFOV BI S2E2 FCN Multiview Pixel Singleview SP Our full model

Figure 5: Semantic segmentation results of bedroom scenes on NYUDv2.

Image GT CRF-RNN DeepLab-LargeFOV BI S2E2 FCN Multiview Pixel Singleview SP Our full model

Figure 6: Semantic segmentation results of living room scenes on NYUDv2.
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Figure 7: Semantic segmentation results of dining room scenes on NYUDv2.

Image GT CRF-RNN DeepLab-LargeFOV BI S2E2 FCN Multiview Pixel Singleview SP Our full model

Figure 8: Semantic segmentation results of kitchen scenes on NYUDv2.
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Figure 9: Semantic segmentation results of bathroom scenes on NYUDv2.

Image GT CRF-RNN DeepLab-LargeFOV BI S2E2 FCN Multiview Pixel Singleview SP Our full model

Figure 10: Semantic segmentation results of office scenes on NYUDv2.
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Figure 11: Semantic segmentation results of classroom scenes on NYUDv2.
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Figure 12: Some failure cases that our method is not able to improve FCN.


