
Supplementary Material : Learning an Invariant Hilbert Space for
Domain Adaptation

Samitha Herath1,2, Mehrtash Harandi1,2 and Fatih Porikli1
1Australian National University, 2DATA61-CSIRO

Canberra, Australia
{samitha.herath, mehrtash.harandi}@data61.csiro.au, fatih.porikli@anu.edu.au

1. Introduction
In this supplementary material,

1. We provide detailed derivations used for our implementation.

2. We elaborate the Riemannian tools used for optimization on the product manifold.

3. We present an experiment elaborating the sensitivity of our solution to the used combination weight λ in the
loss function.

4. We show the improvement obtained by using the orthogonality constraint over the transformation matrices.

5. We provide experimental results for Office+Caltech10 dataset when VGG-FC7 features are used.

2. Derivations
We recall our cost function from the main text,

L = Ld + λLu . (1)

In Eq. 1, Ld is a measure of dissimilarity between labeled samples. The term Lu quantifies a notion of statistical
difference between the source and target samples in the latent space. In brief, the cost Ld was based on the
proposed generalized soft-margin loss, `β on labeled pairs. The statistical loss, Lu was based on Stein divergence,
δs between source and target domain covariances in the latent space. Here, we intend to derive the derivative of
the proposed `β and Lu. Note that all the variable dimensions and the notations are similar to what we have used
in the main text.

2.1. Derivative of soft-margin `β

First we shall recall the structure of the proposed discriminative loss function, Ld ,

Ld = 1
Np

Np∑
k=1

`β
(
M , yk, z1,k − z2,k, 1 + ykεk

)
+ r(M) + 1

Np

√∑
ε2k, (2)

with

`β
(
M , y,x, u

)
= 1
β

log
(

1 + exp
(
βy(xTMx− u)

))
. (3)

1



In Eq. 2, yk denotes whether the k-th pair is similar or dissimilar (i.e., yk = +1 if z1,k and z2,k are from the same
class and yk = −1 otherwise). For the sake of discussion, assume z1,k and z2,k are embedded from the source and
target domains, respectively. That is z1,k = W T

s x
s
i and z2,k = W T

t x
t
j . By expanding `β for such a pair, we get

`β = 1
β

log(1 + exp(βyk((z1,k − z2,k)TM(z1,k − z2,k)− 1− ykεk))) (4)

We will use d(M ,W s,Wt) = (z1,k − z2,k)TM(z1,k − z2,k) to simplify our calculations. Hence, Eq. 4 could be
re-written as,

`β = 1
β

log(1 + exp(βyk(d(M ,W s,Wt)− 1− ykεk))). (5)

We provide the gradients of Eq. 5 with respect to M , Wt, Ws and the slack εk below. To simplify the presentation
we use r = exp(βyk(d(M)− ykεk − 1)).

2.1.1 Derivative w.r.t. M

∇M `β = ykr

(1 + r)∇Md(M)

= ykr

(1 + r) (W T
s x

s
i −W

T
t x

t
j)(xsi

TW s − xtj
T
W t)

= yk(1 + r−1)−1(W T
s x

s
i −W

T
t x

t
j)(xsi

TW s − xtj
T
W t). (6)

2.1.2 Derivative w.r.t. W s (or w.r.t. W t)

∇W s
`β = ykr

(1 + r)∇W s
d(W s) (7)

= 2 ykr

(1 + r)x
s
i (xsi

TW s − xtj
T
W t)M .

= 2yk(1 + r−1)−1xsi (xsi
TW s − xtj

T
W t)M . (8)

For the case where both the pair instances are from the same domain (i.e. z1,k = W T
s x

s
i and z2,k = W T

s x
s
j), it

could be shown that,

∇W s
d(W s) = 2yk(xsi − xsj)(xsi

T − xsj
T )W sM . (9)

Considering Eq. 7 and Eq. 9,

∇W s
`β = 2 ykr

(1 + r) (xsi − xsj)(xsi
T − xsj

T )W sM .

= 2yk(1 + r−1)−1(xsi − xsj)(xsi
T − xsj

T )W sM . (10)

2.1.3 Derivative w.r.t. a Slack variable εk.

The slacks by origin are non-negative. To avoid using a non-negative constraint we make the substitution εk = evk

to Eq. 5.

∴ `β = 1
β

log(1 + exp(βyk(d(M ,W s,Wt, vk)− 1− ykevk ))) (11)



Table 1. Summarized Gradients of the Cost Function. Note we use r = exp(βyk(d(M)− ykεk − 1))
∇W s

`β ; xsi ∈ Rs, xtj ∈ Rt 2yk(1 + r−1)−1xsi (xsi TW s − xtj
T
W t)M

∇W s`β ; xsi ∈ Rs, xsj ∈ Rs 2yk(1 + r−1)−1(xsi − xsj)(xsi T − xsjT )W sM

∇M `β 2yk(1 + r−1)−1(W T
s x

s
i −W

T
t x

t
j)(xsi TW s − xtj

T
W t)

∇vk
`β −evk (1 + r−1)−1

∇W s
Lu 1

pΣsW s

(
2
{
W T

s ΣsW s +W T
t ΣtW t

}−1−
{
W T

s ΣsW s

}−1
)

Obtaining the derivative of Eq. 11 w.r.t. vk,

∇vk
`β = −e

vk exp(βyk(d(M ,W s,Wt, vk)− 1− ykevk ))
(1 + exp(βyk(d(M ,W s,Wt, vk)− 1− ykevk ))

= −evkr

(1 + r) = −evk (1 + r−1)−1 (12)

2.2. Derivative of Statistical loss Lu
The statistical loss (i.e. unsupervised loss) in Eq. 1 is defined with the stein divergence,δs of the domain

covarainces in the latent space. This could be written as,

Lu = 1
p
δs
(
W T

s ΣsW s,W
T
t ΣtW t

)
= 1
p

{
log det

(
W T

s ΣsW s +W T
t ΣtW t

2

)
− 1

2 log det(W T
s ΣsW sW

T
t ΣtW t)

}
= 1
p

{
log det

(
W T

s ΣsW s +W T
t ΣtW t

2

)
− 1

2 log det(W T
s ΣsW s)−

1
2 log det(W T

t ΣtW t)
}
, (13)

where Σs and Σt are respectively the source and target domain covariances. By following that (see Proof 2.11
of [2]),

∇W s
log det(W T

s ΣsW s) = 2ΣsW s(W T
s ΣsW s)−1. (14)

The derivative of Eq. 13 could be obtained w.r.t W s (or similarly for W t
1),

∇W s
Lu = 1

p
ΣsW s

{(
W T

s ΣsW s +W T
t ΣtW t

2

)−1
− (W T

s ΣsW s)−1
}
. (15)

The above derivatives are summarized in Table 1.
1The Stein divergence is symmetric over its two arguments.



3. Product Topology
As the constraints of the optimization problem depicted in Eq. 1 are indeed Riemannian manifolds, the whole

set of constraints can be given a Riemannian structure through the concept of product topology. In particular, the
constraints can be modeled as

Mprod. = St(p, s)× St(p, t)× Sp++ × RNp , (16)

The tangent space of such a product topology [9, 6] could be written as,

T(W s,W t,M ,ε)Mprod. = TW s
St(p, s)× TW t

St(p, t)× TMSp++ × TεRNp . (17)

In Table 3, the metric and, the form of Riemannian gradient and the retraction forMprod. are provided. Here, we
follow the notations of Table 2.

4. Parameter Sensitivity and Orthogonality
In all the above experiments, we keep λ = 1 (see Eq. 1). To analyze the sensitivity of our method to the changes

in parameter λ, we performed an experiment using the unsupervised protocol. This is because the statistical loss
plays a significant role in establishing the correspondence between the source and the target in the unsupervised
DA. We consider two random splits from each of the Office+Caltech10 dataset along VGG-FC6 features here.

Our results are shown in Fig. 1. When λ = 0, no statistical loss term is considered. It is clear that for this case
the performance drops considerably. For other values of λ, the performance is superior and there is little variation
in performance. In other words, our method remains robust.

We further investigate the benefit of orthogonality constraint on W s and W t against free-form and uncon-
strained transformations. Using the orthogonality constraint provides a considerable performance gain as shown
in Fig. 1. While orthogonality makes the optimization more complicated, it seems it guides the learning to better
uncovering the form of adaptation.

Table 2. Riemannian metric, gradient and retraction on St(p, n) and Sp++. Here, uf(A) = A(ATA)−1/2, which yields an
orthogonal matrix, sym(A) = 1

2 (A+AT ) and expm(·) denotes the matrix exponential.
St(p, n) Sp++

Matrix representation W ∈ Rn×p M ∈ Rp×p
Riemannian metric gν(ξ, ς) = Tr(ξT ς) gS(ξ, ς) = Tr

(
M−1ξM−1ς

)
Riemannian gradient ∇W (f)−W sym

(
W T∇W (f)

)
Msym

(
∇M (f)

)
M

Retraction uf(W + ξ) M
1
2 expm(M− 1

2 ξM− 1
2 )M

1
2

Figure 1. Sensitivity to λ in the unsupervised DA.



Table 3. Riemannian metric, gradient and retraction on the proposed Product Manifold in Eq. 16. The Riemannian metrics
gνs and gνt are respectively defined on the Stiefel manifolds of W s and W t. Furthermore, the Riemannian metrics gS
and gE are respectively on the SPD manifold and the Euclidean manifold. As we have used in the main text, ξ and ς are
elements from the tangent spaces of the corresponding manifolds. Here, uf(A) = A(ATA)−1/2, which yields an orthogonal
matrix, sym(A) = 1

2 (A+AT ) and expm(·) denotes the matrix exponential.
Mprod.

Matrix representation
(
W s,W t,M , ε

)
Riemannian metric gνs

(ςs, ξs) + gνt
(ςt, ξt) + gS(ςM , ξM ) + gE(ςE , ξE)

Riemannian gradient
(
∇W s(f)−W ssym

(
W T

s ∇W s(f)
)

, ∇W t(f)−W tsym
(
W T

t ∇W t(f)
)

, Msym
(
∇M (f)

)
M , ∇ε(f)

)
Retraction

(
uf(W s + ξs), uf(W t + ξt), M

1
2 expm(M− 1

2 ξMM
− 1

2 )M
1
2 , Ip

)

5. Office+Caltech10 : VGG-FC7 Feature Experiments
In the main text we compared our results with SURF [1] and VGG-FC6 [10] features of the Office+Caltech10

dataset. Here, we provide the comparison on VGG-FC7 [10] features for both the semi-supervised (see Table 4)
and unsupervised (see Table 5) setups Similarly to the VGG-FC6 experiments we use a dimensionality of 20 for
all the DA-SL algorithms. Furthermore, we use λ = 1 (see Eq. 1). In general for all the DA algorithms, we see
a performance reduction in VGG-FC7 features than the VGG-FC6 features. In the semi-supervised setup, our
solution tops in 7 cases. In the unsupervised setup our solution leads in 8 cases out of 12.

Table 4. Semi-supervised domain adaptation results using VGG-FC7 features on Office+Caltech10 [5] dataset with the
evaluation setup of [7]. The best (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-t 81.8 78.2 68.3 77.8 77.6 67.4 78.1 81.5 66.9 79.0 80.6 77.4
SVM-t 87.5 85.4 76.8 86.2 85.6 75.8 87.0 87.1 76.0 87.1 86.4 84.4

HFA [3] 86.6 85.3 75.2 84.9 85.5 74.8 85.8 86.5 75.1 86.0 85.3 84.8
MMDT [7] 76.9 73.3 78.1 83.6 79.5 72.2 82.3 83.8 71.7 85.3 77.8 72.6

CDLS [8] 90.0 85.0 78.5 87.2 86.5 79.0 87.7 89.5 78.8 87.8 89.7 84.6
ILS (1-NN) 89.3 84.0 81.9 88.4 91.0 80.8 86.9 94.4 78.8 88.9 88.7 83.3

Table 5. Unsupervised domain adaptation results using VGG-FC7 features on Office+Caltech10 [5] dataset with the evalu-
ation setup of [5].The best (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-s 64.0 50.8 72.6 64.5 83.1 60.2 61.2 88.2 52.8 82.6 65.3 54.9
SVM-s 68.0 51.8 76.2 70.1 87.4 65.5 58.7 91.2 56.0 86.7 74.8 61.3

GFK-PLS [5] 74.0 57.6 76.6 75.0 89.6 62.1 67.5 91.9 62.9 84.1 73.6 63.4
SA [4] 75.0 60.7 76.2 74.6 88.8 67.5 66.0 89.5 59.4 82.6 73.6 63.2

CORAL [11] 71.8 61.3 78.6 81.4 90.1 73.6 71.2 93.5 63.0 88.6 76.0 63.8
ILS (1-NN) 80.9 71.3 78.4 85.7 84.8 75.1 76.5 91.8 66.2 87.1 80.1 67.1

References
[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European conference on computer vision,

pages 404–417. Springer, 2006. 5
[2] M. Brookes. The matrix reference manual. Imperial College London, 2005. 3
[3] L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In Proc.

Int. Conference on Machine Learning (ICML), pages 711–718, Edinburgh, Scotland, June 2012. Omnipress. 5
[4] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace

alignment. In Proc. Int. Conference on Computer Vision (ICCV), pages 2960–2967, 2013. 5
[5] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 2066–2073, 2012. 5
[6] V. Guillemin and A. Pollack. Differential topology, volume 370. American Mathematical Soc., 2010. 4
[7] J. Hoffman, E. Rodner, J. Donahue, B. Kulis, and K. Saenko. Asymmetric and category invariant feature transforma-

tions for domain adaptation. Int. Journal of Computer Vision, 109(1):28–41, 2014. 5
[8] Y.-H. Hubert Tsai, Y.-R. Yeh, and Y.-C. Frank Wang. Learning cross-domain landmarks for heterogeneous domain

adaptation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. 5
[9] J. M. Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pages 1–29. Springer, 2003. 4



[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 5

[11] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016. 5


