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This document details and extends the experimental sec-
tion presented in the main manuscript. We describe how
the depth images are segmented into foreground-background
regions and include additional experiments to compare our
new background term (SK) with the DT-based formulation.

Two new experiments are presented. The first one analy-
ses the behaviour of the different tested methods when the
data to fit gets significantly far from the initial mesh used
for tracking. The second one addresses the problem of 3D
reconstruction from depth images with wrong/perturbed ini-
tial camera poses. Last, the temporal performance of the
different methods is also evaluated.

1. Experiment Initialization and Segmentation

For each experiment, each of the N images captured by
the depth camera already provides the set of invalid depth
pixels Ci. We have implemented three different approaches
to segment the remaining pixels into the regions correspond-
ing to object (Di) and background (Bi):

• Segmentation by plane removal. The object is placed
on a flat surface and the camera must mostly observe
the object and the plane it is lying on. Bi is defined by
proximity to a plane fitted to the flat surface and Di by
the remainder.

• Segmentation by background subtraction. The camera
pose is fixed and several images of the object are taken.
By capturing a single image of the background without
the target object present, we can define Di using those
pixels that change between the former images and the
background image.

• Segmentation by depth thresholding. Di is simply de-
fined to be those pixels within a depth range previously
set, and Bi to be the remainder.

Moreover, our algorithm requires an initial guess for the
camera poses, which does not need to be very accurate and
we assume is provided by the user.

2. Tracking distant data

In this experiment we evaluate the performance of the
compared methods when the distance between the data to
fit and the mesh increases. To that end we have recorded an
RGB-D sequence of a person moving his arms, in this case
indoor and with good visibility conditions. Instead of track-
ing consecutive images as in §6.3 of the main manuscript,
the initial mesh is aligned with the data of each image inde-
pendently to evaluate how the different background terms
help the model to converge to the right pose. Apart from
that aspect, the procedure is similar to the one described in
§6.3 of the main manuscript: an initial mesh is provided and
the optimization problem is solved directly for this mesh
without resorting to coarse-to-fine.

Six different images with a resolution of 120 × 160 are
considered for the experiment. Results are shown in Fig. 1. It
can be noticed that NB works well for the first three images
where data is closer to the initial mesh, but fails to push
the arms forward for the last images and wrongly deforms
the main body to fit points which actually correspond to
the left arm. DTall provides the best results since in this
case the segmentations are almost perfect and the number of
pixels with null depth around the person is quite low. Hence,
the DT gradients help the model to converge to the right
solution very quickly. On the other hand, DTsafe provides
results which are even worse than those of NB because
some image borders have null depth and therefore attract the
arms towards them. In this particular example the testing
images could be processed to correct this deficiency but
this is not possible in general (see the sequence in §6.3 of
the main manuscript) and, therefore, we keep the original
images to illustrate the drawbacks of this approach. Last,
SK provides accurate results but for the fifth image. This
is a very challenging experiment for SK because it pushes
the model inwards along its silhouette which, in this case,
mostly leads to compressing the person’s arms. Only the
fingertips provide helpful gradients to bring the arms towards
the main body. Despite this fact, SK outperforms NB and
only fails for the fifth image where a small number of points
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Figure 1. Results after running the optimization problem to align a given initial mesh of a person with geometric data associated to different
postures. The first tested images (left columns) observe a person whose posture is close to the initial mesh while the person’s posture in the
the last ones (right columns) is considerably different from that of the initial mesh.

of the almost-hidden arm causes the model to deform in an
undesirable way (and the optimization to fall into a bad local
minimum).

3. Robustness to Wrong Initial Camera Poses
For this experiment we have recorded a continuous RGB-

D sequence by moving a handheld camera around a teddy
bear. In order to get accurate camera poses we have run a
voxel-based SLAM method which combines [1] and [2]. The
purpose of this experiment is to test the basin of convergence
of the different approaches (here SK, DTall and DTsafe)
when the camera poses are not initialized correctly. To that
end, we will consider the pose estimates provided by [1] as
ground truth and will generate perturbed initial camera poses
by adding Gaussian noise to them (the ground truth poses
are actually not error-free but they are precise enough for the
evaluation). We decimate the sequence and retain only four
depth images to address the 3D reconstruction problem. To
be able to measure the deviations with respect to the original
camera poses, we fix the first camera and only perturb and
optimize for the other three.

The image resolution employed is 60 × 80, and the op-
timization runs until convergence within a coarse-to-fine
scheme. The initial control mesh is obtained as the bounding
box of the data, and is refined once (applyingR) before start-
ing the optimization process. For this experiment we employ
three coarse-to-fine levels although we run the optimization
for the first level twice: first with strong regularization to

avoid the mesh to deform too much while the camera poses
are far from their true positions, and second with a normal
weighting to allow the surface to fit data. Since the teddy
bear was lying on a table when the sequence was recorded,
the segmentations can be obtained by plane removal.

We run a total of 50 tests for each method; results are
shown in Fig. 2. SK provides the lowest error on average
since it is able to recover the camera poses and shrink the
model without penalizing the data term. On the other hand,
DTall is always able to bring the cameras to their right con-
figuration but it goes too far by pushing the model inwards
when it projects on Ci (null depth), leading to higher average
pose errors. Last, DTsafe shows an erratic behaviour, being
sometimes able to bring the cameras to their right poses
and sometimes failing dramatically due to the wrong DT
gradients.

4. Computational Performance
All the experiments have been run on a single core of

an Intel Xeon E5630 CPU at 2.53 GHz (compiled for 32
bits and running on Windows 10). We have chosen to ana-
lyse the runtimes of the experiment described in §6.3 of
the main manuscript where coarse-to-fine is not used. In
this case a mesh with 1128 vertices must fit the data con-
tained in consecutive depth images with QQVGA resolution
(120 × 160). The time taken by a complete iteration of the
Levenberg-Marquardt algorithm is measured for the three
cases considered: fitting without background term (NB),
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Figure 2. Error in the estimation of the camera positions as a func-
tion of the initial average perturbations. For simplicity, only the
translational component of ξi is considered for both the perturba-
tions and the measured errors.

with the DT-based background term and with our approach
(SK). We do not include the time associated to the complete
search because this step is only executed occasionally and is
not part of the LM solver.

As expected, the fastest method is NB whose iterations
take on average 1.46 seconds. When the background terms
are included, the average runtime of the LM iterations in-
creases up to 1.62 seconds (DT) and 2.91 seconds (SK). As
expected, our proposal is the computationally heaviest al-
ternative because it includes an inner maximization process
(raycasting) within the overall optimization.
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