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2Perceiving Systems Department, MPI for Intelligent Systems Tübingen
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Abstract

In this supplementary document, we first give some details on the normalization of the data terms used in our Flowlets in
Section 1 and the derivation of the Markov random field used for the dense tracking problem in Section 2. In addition, we
show with an additional experiment the impact of the frame rate on the estimation error in Section 3, we give more details
on the 3D reconstruction dataset (Section 4) and on the comparison of the state-of-the-art methods with our reference data
(Section 5). Finally, we show some qualitative results of our dense tracking approach, of the motion blur synthesized with the
help of our method and of three state-of-the-art methods in Section 6.

1. Normalization of the Flowlets Data Term
In [5,9] the authors showed that the first-order Taylor approximation leads to a weighting of the data term according to the

image gradient. This results in high weights when the linear assumption is violated and they propose to use a normalization
of the data term to alleviate this problem. The normalization terms of the data terms in our Flowlets
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with θt, θt,t+1 denoting vectors of dimension c, θti the i’th column of the vectors and Ji
t the i’th channel of frame Jt. Using

these normalization factors we obtain the normalized data terms
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2. Derivation of the Markov random field
For the dense tracking problem we consider the location H = {H1, . . . ,HN} and visibility state V = {V1, . . . ,VN}

of each pixel in the reference image I1 and each frame of the sequence. Furthermore, hp = {H1(p), . . . ,HN (p)} is the
location and vp = {V1(p), . . . ,VN (p)} indicates the visibility state of a reference pixel p in all frames.



Given the location and visibility we defined our objective
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phrased as inference in a simpler Markov random field:
By inserting our definitions of the data and smoothness terms we obtain
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Finally, re-arranging the terms yields

E(H∗,V∗) =
∑
p∈Ω

[
λDA

∑
t<s

vt
p vs

p ‖It(ht
p)− Is(h

s
p)‖

1
+ λDF

∑
s=t+1

vt
p vs

p ‖hs
p − ht

p − Ft→s(h
t
p)‖

1

+λFT

N−1∑
t=2

‖ht−1
p (p)− 2ht

p + ht+1
p ‖

1
+ λVT

N−1∑
t=1

[vt
p 6= vt+1

p ]− λV
N∑
t=1

vt
p

]

+
∑
p∼q

ξ(p,q)
N∑
t=1

[
λFSξ(p,q)‖(ht

p − h1
p)− (ht

p − h1
p)‖

2
+ λVS [vt

p 6= vt
q]
]

which can be written as
E(X) =

∑
p

ψUp (xp) +
∑
p∼q

ψPpq(xp, xq) (2)

where xp = (hp,vp) and

ψUp (xp) = λDA

∑
t<s

vt
p vs

p ‖It(ht
p)− Is(h

s
p)‖

1
+ λDF

∑
s=t+1

vt
p vs

p ‖hs
p − ht

p − Ft→s(h
t
p)‖

1

+ λFT

N−1∑
t=2

‖ht−1
p (p)− 2ht

p + ht+1
p ‖

1
+ λVT

N−1∑
t=1

[vt
p 6= vt+1

p ]− λV
N∑
t=1

vt
p

ψPpq(xp, xq) = ξ(p,q)

N∑
t=1

[
λFSξ(p,q)‖(ht

p − h1
p)− (ht

p − h1
p)‖

2
+ λVS [vt

p 6= vt
q]
]



Temporal Window Size 3 Temporal Window Size 5

 0

 2

 4

 6

 8

 10

24 48 72 96 120 144 168 216 264 336 504 1008

E
P

E
 [p

ix
el

]

Frame rate

Ambush
Bamboo

Cave
Market

Mountain
Temple

Average

 0

 2

 4

 6

 8

 10

24 48 72 96 120 144 168 216 264 336 504 1008

E
P

E
 [p

ix
el

]

Frame rate

Ambush
Bamboo

Cave
Market

Mountain
Temple

Average

Temporal Window Size 9 Temporal Window Size 13

 0

 2

 4

 6

 8

 10

48 72 96 120 144 168 216 264 336 504 1008

E
P

E
 [p

ix
el

]

Frame rate

Ambush
Bamboo

Cave
Market

Mountain
Temple

Average

 0

 2

 4

 6

 8

 10

48 72 96 120 144 168 216 264 336 504 1008

E
P

E
 [p

ix
el

]

Frame rate

Ambush
Bamboo

Cave
Market

Mountain
Temple

Average

Figure 1: EPE (MPI Sintel) of non occluded pixels for different frame rates (x-axis) using temporal window size 3,5,9 and
13 for the Flowlets and the naive accumulation.

3. Importance of Frame rate
Our high frame rate version of the Sintel dataset allows us to analyse the impact of frame rate on the performance. In the

following experiment we use the naive accumulation of Flowlets on different frame rates to compare them on the original
frame rate of 24fps. In addition, we exclude occluded regions since the naive accumulation ignores occlusions. We obtain the
different frame rates by skipping frames at the highest frame rate of 1008fps. Note: For some frame rates linear interpolation
is necessary to obtain the flow in the original frame rate of 24fps. In the sequences Ambush and Market the linear interpolation
of non-linear motions cause errors that are not completely following the expected trend.

In Fig. 1 we show the estimation error (EPE) with a temporal window size of 3, 5, 9 and 13 frames using different frame
rates (x-axis). Overall, we observe decreasing errors with higher frame rates. Interestingly, however, this holds true only until
a certain frame rate for a temporal window size of 3 and 5 frames. The reason for the error to increase after the optimal frame
rate, is the accumulation of small estimation errors that causes a significant drift for higher frame rates. Larger temporal
windows perform weaker on lower frame rates but at the same time show a smaller drift over time. Using a larger temporal
window can be considered as using a lower frame rate with additional temporal information since we impose the hard constant
velocity constraint over a longer time period. Therefore, the optimal frame rate is higher with larger temporal frame rates than
with smaller ones, e.g. 144fps using 3 frames and 504 fps using 9 frames temporal windows. The optimal frame rate also
highly depends on the scene. Whereas higher frame rates perform better for Ambush, Cave, Market and Temple, the lowest
frame rate of 24fps is optimal for Bamboo and Mountain. In Bamboo and Mountain we have already very small motions in
the original frame rate thus higher frame rates only lead to a larger drift.



Figure 2: The reconstructed point clouds for 4 different scenes used for evaluating the reference flow fields.

We can therefore conclude as in [6] that while very high frame rates help in general, the optimal frame rate depends not
only on the available resources, but also on the imaging modalities and the scenario at hand. Thus, it is impossible to choose
a single optimal frame rate across all sequences. We therefore use an adaptive frame rate according to the 90% quantile in
our dense tracking approach as described in the paper.

4. 3D Reconstruction Dataset
Our reconstruction dataset consists of 4 point clouds with in total 20 sequences for the evaluation. The point clouds, after

removing outliers manually, are shown in Fig. 2. In the 20 sequences we used different camera motions and viewpoints for a
diverse dataset. In Fig. 3 we show the generated flow fields from our approach for different flow magnitudes and in Fig. 4 we
compare our flow fields to the Epic Flow baseline. All flow illustrations are generated using the Middlebury [1] color scheme
and for the comparison of two flow fields we normalize by the maximum flow of both.

For 100px magnitudes we observed similar performance of our approach and Epic Flow. Therefore we omitted these flow
fields here. In case of occlusions, Epic Flow is having trouble to estimate the correct flow whereas our motion boundaries
are much better (first and second row). At the same time, we observe that repetitive patterns as the bench moving out of the
image are very troublesome for Epic Flow but can easily be handled by our approach. Furthermore, fine details are better
maintained with our approach than Epic Flow as can be seen in the third and forth row.

5. Real-World Benchmark
In tables 1, 2, 3 we show the performance of several state-of-the-art optical flow methods (evaluated against our reference

flow fields) on different scene types (columns), and using different levels of motion blur (rows). We grouped our sequences
in different scenes with similar objects and motions. In the scenes Motocross, Skatepark, Rally, Kids and Ball we have
only a few objects moving in contrast to Marathon, Town, Road and Animals. Furthermore, the objects in Kids, Skatepark,
Marathon, Animals and Town are mostly non-rigid which causes complex non-linear motion and self occlusions.



Reference 100px Magnitude 200px Magnitude 300px Magnitude

Figure 3: Slow Flow estimation examples with 100px, 200px, 300px motion magnitudes for the reconstruction dataset.

We observe some methods to have particular difficulties in the scenes Motocross, Town, Rally and Road. In Motocross
for instance Full Flow [3], ClassicNL [10], LDOF [2] and FlowNet [4] achieve around 5 to 6 pixel EPE whereas the others
achieve 2 to 3 pixel EPE in the simple case of 100px motion magnitude. This gap still remains with larger motion magnitudes.
In the scene Town the methods Full Flow [3], FlowNet [4] and in Rally the methods Full Flow [3], LDOF [2] have this kind
of difficulties. Besides these difficulties with some scenes, we observe the strongest impact of larger motion magnitudes in
scenes with non-rigid objects. For all methods the performance decreases strongly for larger (200 and 300 pixel) motion
magnitudes. In Skatepark, for example, the EPE of the best performing method DiscreteFlow [7] increases from 1.71 to
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Figure 4: Comparison of Slow Flow and Epic Flow estimations on the reconstruction dataset.

3.79 and 6.31 pixel. The reasons are complex non-linear motions, appearance changes and self occlusions that become more
problematic with larger motion magnitudes. With stronger motion blur we observe the strongest loss in performance for all
methods in the scenes Town and Animals. This is primarily caused by a complex non-linear camera motion that makes it
hard to find good matches in the large background region. Only the two approaches FlowNet [4] and ClassicNL [10], not
using feature matches, are not affected as strongly as the others.

In conclusion, the performance on the different scenes are giving us important insights into the strengths and weaknesses
of the different methods. Whereas the methods Full Flow [3], ClassicNL [10], LDOF [2] and FlowNet [4] have difficulties



Blur Method Kids Motocross Skatepark Marathon Town Rally Road Animals Ball Avg
0 Discrete Flow 1.16 2.00 1.71 2.22 0.66 0.63 3.28 0.76 0.21 1.62

Full Flow 1.22 6.68 1.99 2.61 4.30 6.84 5.33 2.62 2.07 3.99
ClassicNL 1.67 6.87 3.35 3.82 0.88 1.57 5.51 1.34 1.66 3.12
Epic Flow 1.57 3.35 2.61 2.84 1.19 1.24 3.97 0.99 0.36 2.26
Flow Fields 1.19 2.71 1.92 2.69 0.68 0.71 3.63 0.78 0.23 1.83
LDOF 1.59 5.60 3.27 3.02 1.30 5.85 6.81 1.88 0.72 3.67
PCA Flow 2.15 2.75 3.17 3.49 1.33 1.70 4.45 1.87 0.66 2.67
FlowNetS 2.38 5.33 3.75 4.47 3.31 2.44 6.43 1.88 1.91 3.93
SPyNet 1.70 6.62 3.28 3.83 2.01 1.68 5.80 1.11 2.67 3.36

1 Discrete Flow 1.24 2.43 2.02 2.50 3.10 0.99 3.37 1.76 0.32 2.37
Full Flow 1.29 6.90 2.42 2.93 5.34 7.10 5.32 2.95 1.38 4.34
ClassicNL 1.73 6.98 3.54 4.03 1.92 1.63 5.49 1.84 1.34 3.43
Epic Flow 1.63 4.17 2.83 3.14 2.72 1.43 4.40 1.47 0.60 2.85
Flow Fields 1.28 2.90 2.18 2.91 1.93 0.93 3.54 1.28 0.31 2.21
LDOF 1.67 6.29 3.71 3.57 4.04 2.31 7.17 3.43 0.76 4.35
PCA Flow 2.24 3.07 3.50 3.70 5.64 1.85 4.61 3.23 0.70 3.79
FlowNetS 2.41 5.00 3.82 4.45 3.30 2.22 6.46 1.95 1.51 3.89
SPyNet 1.77 6.88 3.47 4.05 2.41 1.94 5.77 1.49 3.13 3.58

3 Discrete Flow 1.32 3.24 2.30 3.26 7.42 1.22 3.54 3.28 0.54 3.60
Full Flow 1.40 7.27 2.68 3.02 6.35 6.18 5.13 2.89 1.22 4.48
ClassicNL 1.79 6.82 3.59 4.22 2.88 1.70 5.38 2.05 1.37 3.63
Epic Flow 1.66 4.95 3.25 3.29 3.48 1.59 4.58 2.03 2.21 3.29
Flow Fields 1.32 3.20 2.41 3.32 3.11 1.12 3.71 1.74 0.57 2.64
LDOF 1.87 6.67 4.01 3.58 5.36 2.28 7.42 4.45 1.04 4.87
PCA Flow 2.70 4.26 4.06 3.89 9.10 1.96 4.93 4.93 1.15 4.97
FlowNetS 2.47 5.92 4.03 4.57 3.56 2.23 6.52 2.11 1.62 4.10
SPyNet 1.85 7.03 3.62 4.11 2.73 2.16 5.77 1.75 3.41 3.74

5 Discrete Flow 1.72 4.49 3.55 4.40 23.42 1.79 3.97 7.73 1.00 7.70
Full Flow 1.73 7.57 3.43 3.88 9.20 4.78 5.50 4.34 1.65 5.40
ClassicNL 2.12 7.25 4.31 4.84 5.22 2.15 5.50 3.67 1.52 4.56
Epic Flow 2.03 5.84 3.91 3.99 6.63 1.98 4.86 3.75 3.68 4.48
Flow Fields 1.68 4.75 3.59 4.07 6.54 1.65 4.29 3.70 1.20 4.10
LDOF 2.24 7.73 5.06 4.10 7.94 2.57 7.80 6.31 1.63 6.02
PCA Flow 3.34 5.32 5.44 5.20 18.08 2.51 5.20 10.38 1.72 7.91
FlowNetS 2.64 6.36 4.31 4.99 5.07 2.49 6.54 2.67 1.82 4.61
SPyNet 2.10 7.61 4.10 4.50 4.07 2.68 5.98 2.53 3.57 4.35

7 Discrete Flow 2.33 5.99 5.12 4.92 14.71 2.42 4.60 9.87 1.58 7.01
Full Flow 2.17 8.37 4.61 4.77 11.95 5.46 5.88 6.86 2.07 6.73
ClassicNL 2.56 8.13 5.28 5.55 7.90 2.85 5.73 5.69 2.00 5.74
Epic Flow 2.58 7.16 4.98 5.03 15.38 2.62 5.21 6.43 4.95 6.99
Flow Fields 2.29 6.03 4.82 6.04 10.91 2.51 4.69 7.16 1.82 6.02
LDOF 2.83 8.79 6.12 4.94 11.03 3.20 8.22 8.36 2.56 7.38
PCA Flow 4.54 7.99 7.84 8.24 23.86 3.36 5.75 18.57 2.90 11.20
FlowNetS 2.92 7.17 4.66 5.56 6.89 3.03 6.67 3.55 2.15 5.32
SPyNet 2.48 8.33 4.70 5.05 5.99 3.24 6.26 3.50 3.76 5.16

Table 1: State-of-the-art comparison on the generated reference data with 100 pixel motion magnitude wrt. motion blur.

with some scenes in general, the motion magnitude has an adversarial effect on all methods. The motion magnitude affects
the performance in particular when dealing with non-rigid objects and the motion blur is problematic for feature matching
methods, especially with complex camera motion.

6. Qualitative Results
In Figures 5 and 6, we show some qualitative results for our proposed approach. In the scenes Ball, Marathon, Motocross,

Rally, Road and Town, the resulting flow fields look almost perfect but there are some errors in Animals, Kids and Skatepark.
On the one hand, details are missing, e.g. parts of the wheel in Skatepark, and on the other hand errors occur in occluded
regions, e.g. next to the head of the right kid with 300px magnitude and under the head of the horse. In these cases,
a confidence measure would allow us to exclude these problematic areas. Therefore, we are interested in a probabilistic
version of our approach for future work.

The different level of motion blur for the corresponding reference frames are shown in Figures 7 and 8. In scenes Animals,



Blur Method Kids Motocross Skatepark Marathon Town Rally Road Animals Ball Avg
0 Discrete Flow 2.44 5.26 3.79 3.96 0.87 0.59 3.58 1.51 0.41 2.63

Full Flow 4.56 15.12 8.99 8.42 4.69 14.94 9.95 15.15 10.40 9.93
ClassicNL 4.12 12.18 8.27 8.99 1.44 2.55 8.57 3.55 9.33 6.14
Epic Flow 3.30 6.55 5.42 5.14 1.52 0.96 5.41 1.78 1.49 3.71
Flow Fields 2.62 4.77 4.39 5.90 0.93 0.61 5.39 1.67 0.89 3.26
LDOF 3.67 9.10 6.57 5.60 1.78 6.41 10.96 2.90 8.48 6.08
PCA Flow 3.78 6.18 6.36 5.28 1.66 1.68 6.18 2.79 1.97 4.24
FlowNetS 4.84 10.77 7.21 8.67 3.88 3.48 8.84 3.85 6.09 6.44
SPyNet 3.90 14.40 7.16 7.79 2.61 2.35 9.17 3.41 11.43 6.42

1 Discrete Flow 2.50 7.61 4.21 4.15 3.20 1.02 3.78 3.51 1.01 3.71
Full Flow 4.59 13.94 8.90 8.82 5.73 14.52 10.06 15.49 11.27 10.10
ClassicNL 4.13 11.84 8.60 9.37 2.46 2.66 8.44 4.06 8.36 6.41
Epic Flow 3.47 7.93 5.84 7.04 3.10 1.17 5.45 2.34 5.09 4.53
Flow Fields 2.52 5.36 4.26 5.53 2.08 0.95 5.45 2.37 1.43 3.62
LDOF 3.78 10.56 7.35 6.42 4.61 2.85 11.12 6.90 7.83 7.21
PCA Flow 4.16 6.57 6.61 6.80 6.03 1.78 6.73 4.62 2.90 5.66
FlowNetS 4.84 10.81 7.37 8.82 3.86 3.40 8.73 4.04 5.39 6.45
SPyNet 3.92 14.57 7.47 7.99 2.98 2.60 9.09 3.72 11.70 6.62

3 Discrete Flow 2.97 7.35 4.93 6.11 7.34 1.34 4.20 8.03 2.29 5.50
Full Flow 4.62 14.20 8.76 8.65 6.71 12.40 10.00 14.84 10.33 9.99
ClassicNL 4.23 11.80 8.59 9.51 3.43 2.74 8.18 4.23 7.94 6.56
Epic Flow 3.65 8.62 6.10 6.58 3.93 1.42 5.85 3.36 9.04 5.08
Flow Fields 2.87 6.28 4.91 7.03 3.40 1.05 5.21 2.78 2.50 4.21
LDOF 4.29 12.93 8.87 6.61 6.09 2.89 11.79 10.53 7.90 8.60
PCA Flow 5.12 7.85 10.61 7.67 11.36 1.91 6.69 7.26 4.02 7.84
FlowNetS 4.91 11.20 7.67 9.07 4.12 3.50 8.63 4.50 5.46 6.65
SPyNet 3.97 14.79 7.67 8.18 3.29 2.79 9.07 3.94 12.25 6.80

5 Discrete Flow 3.68 11.00 8.33 7.93 19.97 1.92 4.96 17.02 4.12 10.31
Full Flow 4.64 15.19 9.92 8.77 9.62 9.67 9.80 14.76 9.43 10.51
ClassicNL 4.42 12.59 9.14 9.95 5.70 3.40 8.17 5.57 7.78 7.41
Epic Flow 4.18 12.39 6.69 7.11 7.69 1.68 6.31 6.40 12.24 6.88
Flow Fields 3.08 8.52 6.76 7.58 6.45 1.66 5.74 6.70 4.33 6.03
LDOF 5.00 14.92 11.63 7.30 8.71 3.35 11.81 12.92 7.72 10.11
PCA Flow 6.59 9.04 11.92 9.85 19.58 3.41 7.57 16.50 6.71 11.55
FlowNetS 5.18 11.49 8.05 9.65 5.59 3.68 8.59 4.80 5.74 7.12
SPyNet 4.14 14.81 8.19 8.74 4.65 3.24 9.10 4.64 13.24 7.34

7 Discrete Flow 4.50 10.82 11.06 9.12 16.49 2.81 5.63 20.52 6.55 10.93
Full Flow 5.01 15.43 10.00 8.73 12.18 8.62 10.24 14.19 9.68 10.97
ClassicNL 4.78 13.55 10.06 10.55 8.21 4.47 8.14 7.19 8.17 8.46
Epic Flow 4.74 14.66 7.80 7.62 14.28 2.46 6.76 15.12 13.01 9.90
Flow Fields 3.86 10.45 7.50 8.96 11.34 3.04 6.08 10.25 6.13 8.07
LDOF 5.63 16.44 13.22 8.39 11.61 4.61 12.32 15.49 8.63 11.70
PCA Flow 7.69 12.93 15.59 12.65 28.13 4.03 8.31 20.76 9.18 15.12
FlowNetS 5.59 12.02 8.52 10.46 7.40 4.06 8.74 5.67 6.54 7.86
SPyNet 4.41 15.02 8.68 9.51 6.54 3.78 9.10 5.52 14.05 8.03

Table 2: State-of-the-art comparison on the generated reference data with 200 pixel motion magnitude wrt. motion blur.

Ball, Kids, Motocross and Rally, the foreground has the dominant motion which yields a stronger blur on the foreground
whereas the scenes Skatepark, Road and Town also have a quite blurry background. All in all, the motion blur seems very
realistic and creates new interesting challenges in our benchmark.

Finally, we show some qualitative results for DiscreteFlow [7], Epic Flow [8] and FlowNet [4] on the 300px magnitude
reference data without blur (Fig. 9) and with blur length 7 (Fig. 10). The illustrations are normalized by the maximum flow
of the reference data. The results discussed in Section 5 can also be observed in the visualization of the flow fields. Without
blur, DiscreteFlow is the closest to the reference data in almost all sequences. Only in the Skatepark sequence the three
methods are failing completely. Increasing the blur length to 7 frames strongly affects the performance of DiscreteFlow and
Epic Flow whereas FlowNet still achieves quite good results.



Blur Method Kids Motocross Skatepark Marathon Town Rally Road Animals Ball Avg
0 Discrete Flow 4.74 7.27 6.31 5.69 1.34 1.38 7.43 2.65 4.72 4.62

Full Flow 9.43 29.38 21.68 14.34 14.28 25.11 22.05 43.26 11.68 22.71
ClassicNL 7.60 14.84 13.55 16.44 4.99 3.27 16.73 8.19 10.59 10.97
Epic Flow 6.11 8.02 8.80 7.45 2.23 1.62 11.38 3.85 5.48 6.44
Flow Fields 4.84 7.63 7.59 9.47 1.46 0.89 12.07 2.66 5.06 6.10
LDOF 7.44 14.91 12.92 13.28 4.41 6.84 21.15 31.44 10.50 14.92
PCA Flow 6.93 9.11 9.18 7.47 2.47 2.20 13.40 4.38 6.00 7.24
FlowNetS 8.56 17.11 12.83 15.07 6.34 5.31 16.29 18.86 8.75 12.76
SPyNet 7.71 17.95 12.38 14.43 5.95 3.48 17.36 13.55 12.21 12.02

1 Discrete Flow 5.07 7.59 7.59 6.67 3.67 1.96 7.75 5.30 5.05 5.84
Full Flow 9.75 28.73 21.80 14.37 15.22 25.82 22.23 43.83 11.97 23.05
ClassicNL 7.58 14.81 13.89 16.62 6.06 3.50 16.78 8.33 9.94 11.25
Epic Flow 6.37 9.60 8.96 9.12 3.92 1.84 12.18 4.25 7.61 7.35
Flow Fields 4.97 7.33 7.73 10.69 2.86 1.39 11.54 3.45 5.34 6.50
LDOF 7.68 15.97 14.28 13.94 8.99 3.60 21.37 32.49 9.93 16.03
PCA Flow 7.79 9.25 9.74 10.42 8.85 3.07 13.63 11.85 6.63 9.95
FlowNetS 8.70 17.40 12.68 15.21 6.00 4.95 16.08 19.79 8.16 12.77
SPyNet 7.72 18.37 12.60 14.49 6.21 3.76 17.18 13.43 12.62 12.12

3 Discrete Flow 5.59 8.71 8.18 9.70 10.40 2.24 7.77 7.00 6.09 7.82
Full Flow 10.03 29.65 21.44 14.78 15.84 24.35 22.42 44.49 11.37 23.25
ClassicNL 7.56 14.71 13.93 15.98 7.30 3.60 16.57 7.49 9.55 11.27
Epic Flow 6.95 10.32 8.55 8.26 4.30 2.06 11.59 4.57 9.59 7.38
Flow Fields 5.70 9.69 8.18 10.99 4.20 1.50 11.61 4.00 6.19 7.20
LDOF 8.42 18.86 15.70 14.49 11.54 3.95 21.93 34.19 9.92 17.41
PCA Flow 10.12 10.24 11.48 11.75 18.95 3.18 13.85 16.51 7.51 13.11
FlowNetS 9.02 17.96 13.10 15.94 7.13 5.14 15.95 21.27 8.25 13.36
SPyNet 7.83 18.75 12.87 14.60 6.55 4.03 17.05 13.13 13.01 12.23

5 Discrete Flow 7.18 11.18 11.34 11.86 18.39 3.40 9.14 19.43 7.18 12.33
Full Flow 10.35 30.34 22.48 15.60 17.93 18.85 22.30 45.90 10.90 23.64
ClassicNL 7.79 15.40 14.75 16.37 9.64 4.47 16.25 8.32 9.45 12.03
Epic Flow 7.89 14.27 10.01 9.82 8.03 2.64 12.25 7.27 13.03 9.43
Flow Fields 6.33 13.63 9.82 13.15 7.77 3.79 12.53 7.66 7.45 9.54
LDOF 9.83 19.75 19.61 15.24 14.22 5.32 22.13 34.62 9.65 18.87
PCA Flow 10.91 12.53 18.00 22.38 31.03 4.72 15.06 27.50 9.24 19.26
FlowNetS 9.56 18.09 13.84 16.32 10.86 5.30 15.79 21.24 8.41 14.20
SPyNet 8.09 19.35 13.35 15.03 7.87 4.67 17.01 13.26 13.73 12.72

7 Discrete Flow 8.30 12.48 12.69 11.99 21.10 4.83 10.71 35.31 9.02 15.88
Full Flow 10.83 29.48 22.88 16.45 19.06 16.31 22.64 45.52 11.36 23.75
ClassicNL 8.20 16.22 15.44 17.20 11.70 5.47 15.87 8.87 9.81 12.75
Epic Flow 8.32 16.49 10.75 11.53 19.46 3.49 12.83 12.49 13.86 12.91
Flow Fields 8.46 12.93 11.94 14.15 13.71 4.47 12.72 10.45 8.81 11.59
LDOF 10.54 21.29 22.36 15.33 16.18 8.13 22.26 34.78 10.28 20.09
PCA Flow 12.41 13.80 23.17 16.25 33.66 5.23 16.33 39.06 11.17 22.11
FlowNetS 10.18 18.59 14.31 16.78 12.69 5.60 15.77 17.72 9.00 14.27
SPyNet 8.40 19.98 13.91 15.56 9.41 5.32 16.96 13.42 14.31 13.27

Table 3: State-of-the-art comparison on the generated reference data with 300 pixel motion magnitude wrt. motion blur.
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Figure 6: Reference data of different flow magnitudes for some real-world sequences.
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Figure 7: Different levels of blurring of the reference frame.
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Figure 8: Different levels of blurring of the reference frame.
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Figure 9: Comparison of DiscreteFlow, Epic Flow and FlowNet without blur to the reference data of 300px magnitude.
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Figure 10: Comparison of DiscreteFlow, Epic Flow and FlowNet with 7 frames blur length to the reference data of 300px
magnitude.


