
Straight to Shapes: Real-time Detection of Encoded Shapes
SUPPLEMENTARY MATERIAL

Saumya Jetley ∗ Michael Sapienza ∗† Stuart Golodetz Philip H.S. Torr
Department of Engineering Science

University of Oxford
{sjetley,smg,phst}@robots.ox.ac.uk, m.sapienza@samsung.com

1. Training the Regressor
The regression network architecture was based on the

YOLO design [7], which has 24 convolutional layers, fol-
lowed by 2 fully-connected layers; the convolutional lay-
ers were pre-trained on the ImageNet dataset [8]. The
relative weights between the loss components were set to
λshape = 0.1, λbox = 5, λobj = 1, λnoobj = 0.5 and
λclass = 1.

We trained the network for 500 epochs on the training
set of the PASCAL VOC SBD splits [3]1, which took about
3 days on one Titan X. We used a batch size of 64, a mo-
mentum of 0.9 and a weight decay of 0.0005. The learning
rates for the various batches were set as follows:

Batch Numbers Learning Rate

0 – 200 0.001
201 – 400 0.0025

401 – 20,000 0.005
20,001 – 30,000 0.0025
30,001 – 40,000 0.00125

40,001+ 6.25× 10−4

To mitigate the effects of a relatively small dataset (∼ 5k
training images), we used data augmentation with parame-
ters generated uniformly within the following ranges: ro-
tation (±4◦), translation (± 20% of image size), scaling
(± 3% of image size), random flipping, intensity scaling
(αI + β, with α in the range ±2 and β in the range ±10).

In the main paper, we compared our results qualitatively
to the work of Arnab et al. [1], who kindly tested the algo-
rithm in [1] on the images that we selected from YouTube
videos. Note that we did not compare to [1] quantitatively,
as different training and test data was used in [1] (including
∗Authors contributed equally
†M. Sapienza performed this research at the University of Oxford, and

is currently with Samsung Research America, Mountain View CA.
1https://github.com/bharath272/sds_eccv2014/

blob/master/train.txt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.84

0.86

0.88

0.90

0.92

0.94

0.96

20_dims
50_dims
100_dims
200_dims
256_dims

of training epochs

E
(I

)/
E

(U
)

Figure 1: Learning curves for the denoising auto-encoder
architectures with different sizes of the embedding space.

data from the standard PASCAL VOC dataset [2], the SBD
dataset [3], and MS-COCO [5]).

2. Training the Autoencoder
We trained the auto-encoder architecture described in

§5.3 of the main paper for various dimensionalities of the
embedding space, namely 20, 50, 100, 200 and 256. For
both training and testing purposes, we cropped each image
to the boundary of its inset binary mask and resized it to
64 × 64. We used a batch size of 128 and an initial learn-
ing rate of 0.001, and trained the networks for a total of 300
epochs, with the learning rate being reduced by a factor of
2 every 60 epochs. The network weights were tuned using
back-propagation and stochastic gradient descent (in partic-
ular, the Adam optimization method [4]).

We adjusted the network weights to minimise the binary
cross-entropy loss `ce between the input binary maskm and
the reconstructed binary mask mrecon as follows:

`ce = −
n∑

i=1

mi · log(mrecon
i)+ (1−mi) · log(1−mrecon

i)

(1)
In this, n is the total number of pixels in the input mask.

1

https://github.com/bharath272/sds_eccv2014/blob/master/train.txt
https://github.com/bharath272/sds_eccv2014/blob/master/train.txt

Figure 2: Some example radial descriptors of size 50, su-
perimposed on the original masks (left column) and the re-
constructed masks (right column). Each chosen centre is
shown with a red dot, and we draw green rays between the
centre and each point on the represented shape contour. By
choosing the centre and the way in which we cast rays ap-
propriately in each case, we achieve much better reconstruc-
tion results than we could using the standard centre of the
mask and casting rays outwards; however, for more compli-
cated shapes such as the dog (second row) and the aeroplane
(fourth row), our radial descriptors fail to capture important
details such as the shapes of the ears or the tailplane.

The convergence plots for various sizes of the embed-
ding space are shown in Fig. 1. It is interesting to note
that with the reduction in the size of the embedding space,
the performance degrades gracefully and minimally. No-
ticeably, with a 10 times reduction in the dimensionality,
the expected IoU (Expected(I) / Expected(U)) falls by only
around 0.04 points.

3. Radial Descriptor Computation
To compute a radial descriptor for a binary shape mask,

we adopt the following scheme. Given a fixed descrip-

tor size d, we allocate the first 2 elements of the descrip-
tor to contain the (x, y) coordinates of the centre point we
choose within the mask, normalised to [0, 1]× [0, 1] (where
(0, 0) denotes the top-left of the mask and (1, 1) denotes the
bottom-right). We allocate the remaining d− 2 elements to
contain distances between the chosen centre point and the
boundary at evenly-spaced angles in [0, 2π), each appropri-
ately scaled to fall in the [0, 1] range. In particular, element
i+2 of the descriptor stores the scaled distance between the
centre point and the boundary at an angle of 2πi/(d− 2).

In practice, to achieve better IoU scores for reconstruc-
tion, we construct several radial descriptors for each shape
and pick one with maximal IoU. In particular, we try 25
possible centre points, evenly spaced on a 5× 5 grid super-
imposed over the w × h mask at locations(

jw

6
,
ih

6

)
: i, j ∈ [1, 5].

We also try conceptually casting rays both away from and
towards the centre point (in practice, casting rays towards
the centre point is implemented by casting rays away from
the centre point and only stopping when the outer bound-
ary of the shape is reached). This scheme significantly im-
proves the IoU scores we can achieve for reconstruction
with respect to always using the centre of the mask and cast-
ing rays outwards.

Figure 2 shows some of the size 50 radial descriptors
we calculate, superimposed on both the original and recon-
structed masks so as to illustrate what aspects of shape the
descriptors can and cannot capture. The chosen centre in
each case is shown with a red dot, and we draw green rays
between the centre and each point on the represented shape
contour.

4. Software Implementation
We used the Darknet framework [6] (written in C) from

June 2016 for training our shape prediction model. We de-
veloped our own C++ software to deal with dataset loading,
manipulation, transformations and preparation for the neu-
ral network. We also developed C++ code to evaluate our
system on instance segmentation; our code is several times
faster than the standard MATLAB version of Hariharan et
al. [3]. For ease of development, we used the Torch frame-
work for learning the shape embedding, and interfaced the
C++ and Lua code using the LuaBridge library2. This inter-
face includes delays that could be avoided by implementing
an optimised version of our Lua code in C++.

Real-Time Demo. We also developed some code to
demonstrate that our system generalises to scenes captured
by a web-camera, as illustrated in Fig. 3.

2https://github.com/vinniefalco/LuaBridge

https://github.com/vinniefalco/LuaBridge

Figure 3: Testing direct regression to shape from a live we-
bcam image stream.

Reproducible Results. We will make the code and mod-
els used to obtain our results available upon publication.

5. Further Qualitative Results

Visualisation of the embedding spaces. In Figs. 4, 5,
and 6, we visualise the embedding spaces produced by the
binary masks, radial vectors and learned embedding re-
spectively. We fix 20 anchor points in each of the em-
bedding spaces around the main diagonal of the 2D space.
For each of the anchor points, we sample the 20 nearest
neighbours to observe how the shapes are organised in the
space. At a macroscopic level, as we move along the an-
chor points (across the rows of the tiled images), we notice
that the shapes change between being bulky and rounded
to shapes with multiple protrusions. For the learned em-
bedding space, this pattern is more pronounced (see Fig. 6).
In the radial space, both bulky and thin shapes are present
along a single row (see Fig. 5 rows 3 and 7), thus in places
showing an inferior organisation.

Both the binary mask space and the learned embedding
space are well-organised for shape similarity. It is inter-
esting to note that the learned embedding space achieves a
similar shape organisation to the downsampled binary mask
space, but with an order of magnitude reduction in size.

Shape prediction. In Figs. 7 and 8, we show additional
qualitative results of our shape prediction system on the
PASCAL VOC [2] (SBD) validation set.

References
[1] A. Arnab and P. H. S. Torr. Bottom-up instance segmentation

using deep higher-order crfs. In Proc. British Machine Vision
Conference, 2016. 1

[2] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. Pascal visual object classes challenge results.
Available from www.pascal-network.org, 2005. 1, 3

[3] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In Proc. European Conf.
Computer Vision, 2014. 1, 2

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In Proceedings of the 3rd International Conference
on Learning Representations (ICLR), 2014. 1

[5] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: common objects in context. In
Proc. European Conf. Computer Vision, 2014. 1

[6] J. Redmon. Darknet: Open source neural networks in c.
http://pjreddie.com/darknet/, 2013–2016. 2

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. In IEEE Int.
Conf. on Computer Vision and Pattern Recognition, 2016. 1

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet large scale visual recognition chal-
lenge. Int. Journal of Computer Vision, 2015. 1

http://pjreddie.com/darknet/

Figure 4: Visualisation of the 16 × 16 binary mask embedding space. (top) Ground truth binary masks. Rows (in top)
represent the 20 neighbouring binary masks for each of the 20 anchor points in the embedding space (bottom).

Figure 5: Visualisation of the 256-D radial vector embedding space. (top) Ground truth binary masks. Rows (in top) represent
the 20 neighbouring binary masks for each of the 20 anchor points in the embedding space (bottom).

Figure 6: Visualisation of the 20-D learned embedding space. (top) Ground truth binary masks. Rows (in top) represent the
20 neighbouring binary masks for each of the 20 anchor points in the embedding space (bottom).

Figure 7: A more detailed look at the results. (a) The results from our shape prediction network next to (b) the ground
truth. (a) (top) Two people ride a tandem bike. Note that our system predicts shapes and bounding boxes (learnt jointly) for
localisation. As such, any errors in localisation will affect the location at which the shape gets superimposed onto the image
(the box does not hug the bike tires tightly). In (b) (top), note the complexity of the shapes that need to be predicted. In
the bottom row, multiple cars are detected. The predicted shape contains information on the direction that the car is facing,
information that is not available from bounding boxes alone. It is noteworthy that even thought the output shape mask is not
pixel-accurate, it still contains a lot of information about the object’s orientation and shape, and its similarity to other shapes
in the shape embedding.

Figure 8: Additional qualitative results from the PASCAL VOC (SBD) validation set. Note the huge variety in shapes, even
within a single category.

