Supplemental material - Improving training of deep neural networks via Singular Value Bounding

Lemma 1 For a matrix $W \in \mathbb{R}^{M \times N}$ with singular values of all 1, and a diagonal matrix $G \in \mathbb{R}^{M \times M}$ with nonzero entries $\{g_i\}_{i=1}^M$, let $g_{\max} = \max(|g_1|, \ldots, |g_M|)$ and $g_{\min} = \min(|g_1|, \ldots, |g_M|)$, the singular values of $\widetilde{W} = GW$ is bounded in $[g_{\min}, g_{\max}]$. When W is fat, i.e., $M \leq N$, and rank(W) = M, singular values of \widetilde{W} are exactly $\{|g_i|\}_{i=1}^M$.

Proof. We first consider the general case, and let $P = \min(M, N)$. Denote singular values of W as $\sigma_1 = \cdots = \sigma_P = 1$, and singular values of \widetilde{W} as $\widetilde{\sigma}_1 \geq \cdots \geq \widetilde{\sigma}_P$. Based on the properties of matrix extreme singular values, we have

$$\sigma_1 = \| \boldsymbol{W} \|_2 = \max_{\boldsymbol{x} \neq 0} \frac{\| \boldsymbol{W} \boldsymbol{x} \|_2}{\| \boldsymbol{x} \|_2} = \min_{\boldsymbol{x} \neq 0} \frac{\| \boldsymbol{W} \boldsymbol{x} \|_2}{\| \boldsymbol{x} \|_2} = \sigma_P = 1.$$

Let $oldsymbol{x}^* = rg \max_{oldsymbol{x}
eq 0} \frac{\|\widetilde{oldsymbol{W}} oldsymbol{x}\|_2}{\|oldsymbol{x}\|_2},$ we have

$$ilde{\sigma}_1 = rac{\|\widetilde{m{W}}m{x}^*\|_2}{\|m{x}^*\|_2} = rac{\|m{G}m{W}m{x}^*\|_2}{\|m{x}^*\|_2} \leq rac{\|m{G}\|_2\|m{W}m{x}^*\|_2}{\|m{x}^*\|_2},$$

where we have used the fact that $\|Ab\|_2 \le \|A\|_2 \|b\|_2$ for any $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$. We thus have

$$\tilde{\sigma}_1 \leq \|\boldsymbol{G}\|_2 \frac{\|\boldsymbol{W}\boldsymbol{x}^*\|_2}{\|\boldsymbol{x}^*\|_2} \leq \|\boldsymbol{G}\|_2 \max_{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{W}\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} = |g_{\max}|.$$

Since G has nonzero entries, we have $W = G^{-1}\widetilde{G}$. Let $x^* = \arg\min_{x \neq 0} \frac{\|\widetilde{W}x\|_2}{\|x\|_2}$, the properties of matrix extreme singular values give $\widetilde{\sigma}_P = \frac{\|\widetilde{G}x^*\|_2}{\|x^*\|_2}$, and $\sigma_P = \min_{x \neq 0} \frac{\|Wx\|_2}{\|x\|_2} = 1$. We thus have

$$1 = \min_{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{G}^{-1}\widetilde{\boldsymbol{G}}\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \leq \frac{\|\boldsymbol{G}^{-1}\widetilde{\boldsymbol{G}}\boldsymbol{x}^*\|_2}{\|\boldsymbol{x}^*\|_2} \leq \|\boldsymbol{G}^{-1}\|_2 \frac{\|\widetilde{\boldsymbol{G}}\boldsymbol{x}^*\|_2}{\|\boldsymbol{x}^*\|_2},$$

which gives $\tilde{\sigma}_P \geq |g_{\min}|$. Overall, we have

$$|g_{\max}| \geq \tilde{\sigma}_1 \geq \cdots \geq \tilde{\sigma}_P \geq |g_{\min}|.$$

We next consider the special case of $M \leq N$ and $\operatorname{rank}(\boldsymbol{W}) = M$. Without loss of generality, we assume diagonal entries $\{g_i\}_{i=1}^M$ of \boldsymbol{G} are all positive and ordered. By definition we have $\widetilde{\boldsymbol{W}} = \boldsymbol{I}\boldsymbol{G}\boldsymbol{W}$, where \boldsymbol{I} is an identity matrix of size $M \times M$. Let $\boldsymbol{V} = \begin{bmatrix} \boldsymbol{W}^\top, \boldsymbol{W}^{\bot\top} \end{bmatrix}$, where \boldsymbol{W}^\bot denotes the orthogonal complement of \boldsymbol{W} , we thus have the SVD of $\widetilde{\boldsymbol{W}}$ by construction as $\widetilde{\boldsymbol{W}} = \boldsymbol{I} [\boldsymbol{G}, \boldsymbol{0}] \boldsymbol{V}^\top$. When some values of $\{g_i\}_{i=1}^M$ are not positive, the SVD can be constructed by changing the signs of the corresponding columns of either \boldsymbol{I} or \boldsymbol{V} . Since matrix singular values are uniquely determined (while singular vectors are not), singular values of $\widetilde{\boldsymbol{W}}$ are thus exactly $\{|g_i|\}_{i=1}^M$.