Supplemental material - Improving training
of deep neural networks via Singular Value
Bounding

Lemma 1 For a matrix W € RM*N vwith singular val-
ues of all 1, and a diagonal matrix G € RM*M ith
nonzero entries {g;},, let gmax = max(|g1],- .., |gn])
and gmin = min(|g1|, ..., |gm|), the singular values of
W = GW is bounded in [Gmins Gmax)- When W is fat,
ie, M < N, and rank(W') = M, singular values ofﬁ7
are exactly {|g;|} ;.

Proof. We first consider the general case, and let P =
min(M, N). Denote singular values of W as o7 = --+ =
op = 1, and singular values of W as oy > -+ > Op.
Based on the properties of matrix extreme singular values,
we have
el L [Well

= min =

o1 = ||W _— = — - =
1= Wil = max o = B8 e,

Wl
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where we have used the fact that || Abl||2 < ||Al|2]|b]|2 for
any A € R™*" and b € R™. We thus have
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Since G has nonzero entries, we have W = G 'G. Let
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which gives &p > |gmin|- Overall, we have
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We next consider the special case of M < N and
rank(W) = M. Without loss of generality, we assume
diagonal entries {g; } ¥ 1 of G are all positive and ordered.
By definition we have W=1I GW , where I is an identity

matrix of size M x M. Let V = [WT WJ‘T} where

W+ denotes the ~orthogonal complement of W, we thus
have the SVD of W’ by construction as W = I [G, 0]V .
When some values of {g; }}£, are not positive, the SVD can
be constructed by changing the signs of the corresponding
columns of either I or V. Since matrix singular values are
uniquely determined (while singular vectors are not), singu-
lar values of W are thus exactly {|g;|}, . O



