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In this supplementary material, we first revisit the Re-
mark 1 given in the paper, and give supporting illustrations
about calculation of the boundary of a union of two sub-
meshes. Second, we discuss the relationship between the
model size and our new proposed score function and show
that our solution to the view planning problem (VPP) is in-
dependent of the model size. Third, we provide the details
of SARSA algorithm for the reader’s convenience. Forth,
we analyze the next best view (NBV) selection behavior
of the methods included in the paper. Then, we show the
complete set of plots for value function approximation per-
formance of Reinforcement Learning agents (i.e. SARSA,
Watkins-Q and TD). Finally, we show additional coverage
results for the whole dataset.

1. Calculating the Boundary of the Covered
Region on the 3D Model

In the paper, in Remark 1, we mentioned that given two
submeshes X7, X5 C €, the boundary bd(X; U X5) can be
calculated as follows

bd(X1 U X2) = [bd(X1) \ ed(X2)] U [bd(X2) \ ed(X1)]
U [bd(X71) Nbd(X32)]

ey
where ed(-) denotes the set of all edges of the submesh.
This equation is crucial in calculation of the new bound-
ary of a covered region after adding the next view to our
existing coverage. This formulation can handle all possi-
ble scenarios: i) when X7, X5 do not intersect, ii) X7, X5
intersect with overlapping faces, iii) X7, X5 intersect with
only overlapping edges. In Figure 1 we illustrate how Eq. 1
would work on two simple submeshes without loss of gen-
erality. In this figure, X;, X, are represented by gray and
blue colored simple triangulations in the top left image.
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Figure 1. Illustration of calculating the new boundary of the sur-
face area seen by all cameras after adding a new camera.

2. The Model Size and the Score Function

We find it helpful to have a brief discussion on the re-
lationship between the model size and the score function,
and hence the proposed method. Suppose that we solved a
VPP for a given model, a fixed set of cameras, and a set of
lambdas A. Then, it is natural to ask whether our method
would come up with a different solution if the model size
and the camera parameters were altered while keeping A
the same. Because if this was the case, the solution would
depend on the model size, which, we think, would be quite
undesirable. Fortunately, this turns out to be not the case.
We argue as follows: For two cameras assume that we have
two associated covered submeshes M; and M,. Suppose
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Figure 2. The relationship between the model resize factor p and
the score function.

further that when we resize the model (and the camera pa-
rameters accordingly) we find the new submeshes Ml and
M. Let’s denote the resize factor by i, which is assumed to
be a positive number. Resizing a triangle by a factor © mul-
tiplies its area by 2 and each of its edges by p. Since our
meshes are collections of triangles, the same rule applies to
the submeshes. That is, the equalities

A(M;) = 2 A(M;) and £(L;) = pL(M;) ()

are satisfied for ¢« = 1, 2. If, for the scores of X; and X5,
we have AW o AWL) e the equations (2) yield
LM LM)X> q y

A(M) < A(My)

L(My)> L(M2)>"
ing of the cameras would not change, even if we resized the
model. Hence, the solution we find is independent of the
model size, as desired. It is important to note, however, that
the score function often changes with u, even though the
ordering of the cameras does not change. For an illustration
of the behavior of the score function with changing u, we

refer to Figure 2.

Therefore, we conclude that the order-

3. SARSA Algorithm

We described our implementation of Watkins-Q and TD
algorithms in the paper. For the sake of completeness, in al-
gorithm box (1) we include the implementation of SARSA
algorithm, too.

4. Analysis of NBV suggested by each Method

In Figure 3 we plot the change in coverage after camera
selections for each model and each method during test. As
expected, the greedy method (shown in blue dashes) tries
to cover the model surface with long steps as much as pos-
sible. Notice the big jumps on the y-axis at the beginning
of the planning. The Alternating- A (shown in cyan color)
method starts like the greedy method but then continues
alternating between shorter and longer steps (i.e. greedy,
non-greedy, greedy,... etc.). On the other hand, the Re-

Algorithm 1 SARSA Agent
1: procedure TRAIN

2: 0 < random network weights
3: a <+ learning rate

4 Ae < eligibility — A

5: repeat

6: ¢ +— random view point

7: s+ {cle+0,r+ —-1,6«0
8: A* argmgx%(@, 5, )

9: while true do

10: e+ e+ Voi(0,s,\%)
11: 01— (0,5, \")

12: if s is Terminal then

13: 0+—0+a-d-¢

14: break

15: c <+ NBV(\*)

16: s« sU{c}

17: A arg max G-(0,5,A)
18: 6 < 0+ qx(0,5,X")

19: 0+—0+a-d-¢
20: e+ e- A
21: until Last episode

inforcement Learning (RL) agents follow completely non-
trivial strategies to finish the coverage task. For example,
SARSA, TD and WQ (shown in red, green and magenta, re-
spectively) learn to start with shorter steps at the beginning
and then continue with unpredictable varying steps. These
agents learn to consider future steps at the early stages of
the camera selection process.

5. Value Function Approximation Perfor-
mance

In the Results and Discussions section of the paper we
discussed the value function approximation quality for two
cases only. It was part of a much bigger experiment which
examined the performance of 36 neural nets. The error plots
of all 36 cases can be found in Figures 6, 7 and 8.

6. More Results

In Figure 4, on three models, we illustrate the coverage
update after selecting a new camera when SARSA agent is
used with RCC equals .92. Rows [2-4] show images seen
by the selected camera at each step of the process. Cov-
erage information is shown by red (regions observed first
time by that camera) and green (regions observed by multi-
ple cameras) colors on the images. In Figure 5, we provide
the coverage results for SARSA agent for the whole dataset
included in the paper.
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Figure 3. Visualization of the coverage process for twenty models for all methods.
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Figure 4. Top row: Coverage result for three objects from second dataset with relative coverage criteria RCC equals 0.92. Surface colors
represent regions covered by the cameras. Rows [2-4] illustrate the update in coverage after selecting a new camera during test time by the
SARSA agent. On each image, red color represents the surface seen by that camera for the first time. Green color represents surfaces that

have been seen before. Colorless surfaces are unknown to the current camera meaning that they are not visible because visibility quality
criteria is not satisfied. Please see definiton of RCC in the original paper.
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Figure 5. Visual coverage results on the models by SARSA agent.
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Figure 6. Value function approximation performance.
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Figure 7. Value function approximation performance.
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Figure 8. Value function approximation performance.



