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1. Evaluation in PSB/COSEG
The labeling accuracy of our method (ShapePFCN), Shape-
Boost [2] and Guo et al. [1] per category is presented in
Table 1. Aggragate performance is shown in Table 2. The
labeling accuracy for a shape is measured as the percentage
of surface area labeled correctly according to the ground-
truth face labeling provided in the L-PSB [2] and COSEG
[3] datasets. Please see our paper for more discussion.

2. ShapeBoost results on RGB-D sensor data
We applied ShapeBoost on the same objects used in Figure
4 of our paper. The method failed to produce compelling
results - see Figure 1 below, and compare with the results of
our method shown in Figure 4 of our paper. We suspect that
the underlying reason for these failure cases of ShapeBoost
(and in general methods that rely on hand-engineered geo-
metric descriptors) is that noise, holes, and mesh degenera-
cies easily distort geometric descriptors. Another potential
reason is that shallow classifiers tend to underfit datasets of
shapes with significant variability.
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Figure 1. Labeled segmentations produced by ShapeBoost on
noisy objects reconstructed from RGBD sensor data.

3. Additional data
In our supplementary material and project page (see:
http://people.cs.umass.edu/kalo/papers/shapepfcn/), we
provide visualizations of segmentations produced by our
method, ShapeBoost [2] and Guo et al. [1] on our test
shapes from ShapeNetCore, PSB and COSEG. We also
provide a text file (splits.txt) that includes the training and
test splits we used in our experiments.

#train/test #part ShapeBoost Guo et al. ShapePFCNshapes labels
psbAirplane 12 / 8 5 96.1 91.6 93.0

psbAnt 12 / 8 5 98.7 97.6 98.6
psbArmadillo 12 / 8 11 92.6 85.0 92.8
psbBearing 12 / 8 5 92.2 77.4 92.3

psbBird 12 / 8 5 89.6 83.1 88.5
psbBust 12 / 8 8 63.4 34.8 68.4
psbChair 12 / 8 4 98.1 96.7 98.5
psbCup 12 / 8 2 94.0 92.1 93.8
psbFish 12 / 8 3 95.7 94.5 96.0

psbFourLeg 12 / 8 6 83.3 82.4 85.0
psbGlasses 12 / 8 3 96.9 95.3 96.6
psbHand 12 / 8 6 94.4 73.8 84.8

psbHuman 12 / 8 8 86.8 85.6 94.5
psbMech 12 / 8 5 99.5 98.5 98.7

psbOctopus 12 / 8 2 98.2 97.4 98.3
psbPlier 12 / 8 3 95.2 95.2 95.5
psbTable 12 / 8 2 99.4 98.5 99.5
psbTeddy 12 / 8 5 98.7 97.3 97.7
psbVase 12 / 8 5 81.7 77.8 86.8

cosegCandelabra 12 / 16 4 85.5 85.9 95.4
cosegChairs 12 / 8 3 94.8 93.8 96.1
cosegFourleg 12 / 8 5 92.3 88.2 90.4
cosegGoblets 6 / 6 3 97.0 86.1 97.2
cosegGuitars 12 / 32 3 97.7 97.7 98.0
cosegIrons 12 / 6 3 87.2 79.7 88.0

cosegLamps 12 / 8 3 76.3 78.0 93.0
cosegVases 12 / 16 4 86.4 84.4 84.8

cosegVasesLarge 12 / 288 4 89.7 80.1 90.6
cosegChairsLarge 12 / 388 3 76.5 80.8 91.1
cosegTeleAliens 12 / 188 4 81.7 80.0 95.7

Table 1. Dataset statistics and labeling accuracy per category for
test shapes in PSB & COSEG.

ShapeBoost Guo et al. ShapePFCN
Category Avg. 90.6 86.3 92.6

Category Avg. (>3 labels) 89.5 83.3 90.9
Dataset Avg. 84.2 82.1 92.2

Dataset Avg. (>3 labels) 87.2 81.0 92.1
Table 2. Aggregate labeling accuracy on PSB & COSEG.
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