Supplementary Materials for InstanceCut: from Edges to Instances with MultiCut

Alexander Kirillov¹ Evgeny Levinkov² Bjoern Andres² Bogdan Savchynskyy¹ Carsten Rother¹ TU Dresden, Dresden, Germany ²MPI for Informatics, Saarbrücken, Germany

¹name.surname@tu-dresden.de ²surname@mpi-inf.mpg.de

In Table 2 we present a detailed performance comparison. Fig. 7 contains the subset of difficult scenes where InstanceCut is able to predict most instances correctly. Fig. 8 contains failure cases of InstanceCut. The main sources of failure are: small objects that are far away from the camera, groups of people that are very close to camera and have heavy mutual occlusions, and occluded instances that have several disconnected visible parts.

Method	Metric	Mean	Person	Rider	Car	Truck	Bus	Train	Motorcycle	Bicycle
MCG+R-CNN [13]	AP	4.6	1.3	0.6	10.5	6.1	9.7	5.9	1.7	0.5
Uhrig et al. [48]	AP	8.9	12.5	11.7	22.5	3.3	5.9	3.2	6.9	5.1
InstanceCut	AP	13.0	10.0	8.0	23.7	14.0	19.5	15.2	9.3	4.7
MCG+R-CNN [13]	AP50%	12.9	5.6	3.9	26.0	13.8	26.3	15.8	8.6	3.1
Uhrig et al. [48]	AP50%	21.1	31.8	33.8	37.8	7.6	12.0	8.5	20.5	17.2
InstanceCut	AP50%	27.9	28.0	26.8	44.8	22.2	30.4	30.1	25.1	15.7
MCG+R-CNN [13]	AP100m	7.7	2.6	1.1	17.5	10.6	17.4	9.2	2.6	0.9
Uhrig et al. [48]	AP100m	15.3	24.4	20.3	36.4	5.5	10.6	5.2	10.5	9.2
InstanceCut	AP100m	22.1	19.7	14.0	38.9	24.8	34.4	23.1	13.7	8.0
MCG+R-CNN [13]	AP50m	10.3	2.7	1.1	21.2	14.0	25.2	14.2	2.7	1.0
Uhrig et al. [48]	AP50m	16.7	25.0	21.0	40.7	6.7	13.5	6.4	11.2	9.3
InstanceCut	AP50m	26.1	20.1	14.6	42.5	32.3	44.7	31.7	14.3	8.2

Table 2: CityScapes results. Instance-aware semantic segmentation results on the test set of CityScapes, given for each semantic class.

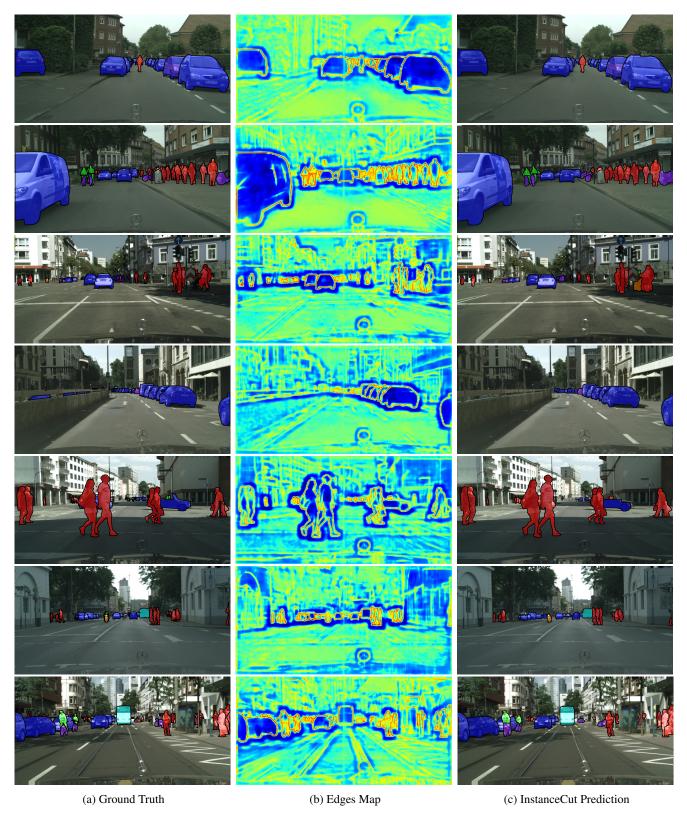


Figure 7: Curated difficult scene, where InstanceCut performs well. The left column contains input images with ground truth instances highlighted. The middle column depicts per-pixel instance-aware edge log-probabilities and the last column shows the results of our approach.

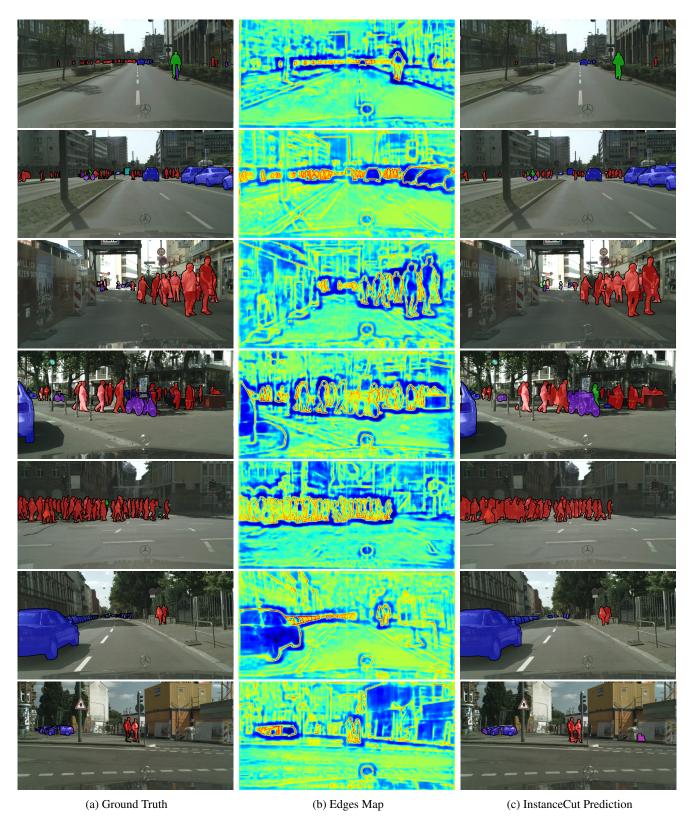


Figure 8: Failure cases. The left column contains input images with ground truth instances highlighted. The middle column depicts per-pixel instance-aware edge log-probabilities and the last column shows the results of our approach.