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This appendix includes (1) additional details on the Elimi-
nation Theorem (in Sec. 1), (2) derivation of the constraints
on the projection for planar scenes by cameras with un-
known focal length (in Sec. 2), (3) details of focal length
extraction (in Sec. 3), (4) detailed presentation of the gener-
ators ofE+f problem (in Sec. 4), (5) results on the solvers’
sparsity (in Sec. 5), and (6) noise experiment for the E+f+k
problem (in Sec. 6).

1. Details on the elimination theorem
Here we provide additional details for

Theorem 1.1 (Elimination theorem [1]) Let I ⊆
C[x1, . . . , xn] be an ideal and let G be a Gröbner
basis of I with respect to the lexicographic monomial order
where x1 > x2 > · · · > xn. Then, for every 0 ≤ l ≤ n, the
set Gl = G ∩ C[xl+1, . . . , xn] is a Gröbner basis of the
l-th elimination ideal Il = I ∩ C[x1, . . . , xl] .

See [1] for a full account of the theory.
The ring C[x1, . . . , xn] stands for all polynomials in n

unknowns x1, . . . , xn with complex coefficients. In com-
puter vision applications, however, coefficients of polyno-
mial systems are always real (in fact, rational) numbers and
our systems consist of a finite number s of polynomial equa-
tions fi(x1, . . . , xn) = 0, i = 1, . . . , s.

The ideal I = {
∑s

i=1 hifi |hi, . . . hs ∈ C[x1, . . . , xn]}
generated by s polynomials (generators) fi is the set of all
polynomial linear combinations of the polynomials fi. Here
the multipliers hi are polynomials. All elements in the ideal
I evaluate to zero (are satisfied) at the solutions to the equa-
tions fi(x1, . . . , xn) = 0.

The Gröbner basis G = {g1, . . . , gm} of an ideal I is
a particularly convenient set of the generators of I , which
can be used to find solutions to the original system fi in an

easy way. For instance, for linear (polynomial) equations, a
Gröbner basis of the ideal generated by the linear polyno-
mials is obtained by Gaussian elimination. After Gaussian
elimination, equations appear in a triangular form allowing
one to solve for one unknown after another. This pattern
carries on in a similar way to (some) Gröbner bases of gen-
eral polynomial systems and thus it makes Gröbner bases a
convenient tool for solving general polynomial systems.

Algorithmic construction of Gröbner bases relies on an
ordering of monomials to specify in which order to deal
with monomials of a polynomial. Lexicographic monomial
order (LEX) is a particularly convenient order, which can
be used to produce Gröbner bases that are in the triangular
form. LEX orders monomials as words in a dictionary. An
important parameter of a LEX order (i.e. ordering of words)
is the order of the unknowns (i.e. ordering of letters). For
instance, monomial xy2z = xyyz > xyzz = xyz2 when
x > y > z (i.e. xyyz is before xyzz in a standard dictio-
nary). However, when x < y < z, then xy2z = xyyz <
xyzz = xyz2. We see that there are n! possible LEX orders
when dealing with n unknowns.

The set Gl = G ∩ C[xl+1, . . . , xn] contains all
the polynomials in Gröbner basis G that contain only
unknowns xl+1, . . . , xn. For instance, if G is a
Gröbner basis in the triangular form, then Gl =
{gm(xn), gm−1(xn−1, xn), . . . , gm−l(x1, . . . , xl+1)} con-
tains polynomials in one, two, . . . , l unknowns.

The polynomials Gl generate the elimination ideal Il =
I ∩ C[xl+1, . . . , n], containing all polynomials from I that
use the unknowns xl+1, . . . , xn only. Hence, for each of n!
orderings, we get n elimination ideals Il.
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2. 3D planar homograpy with unknown focal
length

We assume that a planar object (say, simply a plane) is ob-
served by an unknown camera with the projection matrix [2]

P = K[R | t], (1)

where K = diag(f, f, 1) is the calibration matrix with the
unknown focal length f , R = [rij ]

3
ij=1 ∈ SO(3) is the

unknown rotation, and t = [t1, t2, t3]
> ∈ R3 the unknown

translation.
Without loss of generality, we assume that the plane is

defined by z = 0, i.e. all 3D points with homogeneous
coordinates Xi = [xi, yi, zi, 1]

> have the 3rd coordinate
zi = 0. Then, the image points ui = [ui, vi, 1]

> and the
corresponding 3D points Xi = [xi, yi, 0, 1]

> are related by

αi ui = H X̂i, (2)

where αi are unknown scalars, X̂i = [xi, yi, 1], and H =
[hij ]

3
ij=1 ∈ R3×3 is a homography matrix that has the form

H =
[
p1 p2 p4

]
=

 f r11 f r12 t1
f r21 f r22 t2
r31 r32 t3

 (3)

where pj is the jth column of the projection matrix P (1).
Next, from the projection equation (2), we eliminate the

scalar values αi. This can be done by multiplying (2) by the
skew symmetric matrix [u]× [2] to get 0 −1 vi

1 0 −ui

−vi ui 0

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 xi
yi
1

 = 0 (4)

The matrix equation (4) contains three polynomial equa-
tions, two of which are linearly independent. This means
that we need at least 3.5 2D ↔ 3D point correspondences
to estimate the unknown homography H, because H has 7
degrees of freedom: three parameters for the rotation, three
parameters for the translation and also the focal length.

For the 3.5 point correspondences, matrix equation (4)
results in seven linearly independent linear homogeneous
equations in nine elements of the homography matrix H.

Moreover, we have here two additional polynomial con-
straints on elements of H. For the first two columns of the
rotation matrix R, there holds

r11r12 + r21r22 + r31r32 = 0 (5)
r211 + r221 + r231 − r212 − r222 − r232 = 0 (6)

This means that the elements of the first two columns of the
homography matrix H = [hij ]

3
ij=1 (3) satisfy

w2 h11 h12 + w2 h21h22 + h31h32 = 0 (7)
w2 h211 + w2 h221 + h231 − w2 h212 − w2 h222 − h232 = 0 (8)

where w = 1/f .
Hence, estimating 3D planar homography with unknown

focal length results in seven linear homogeneous equa-
tions and two non-linear homogeneous equations in X =
{h11, h12, h13, h21, h22, h23, h31, h32, h33, w}. This sys-
tem of nine homogeneous equations has the same form as
that presented in Section 2.2 of the main paper. Therefore
this system can be efficiently solved using the new elimi-
nation strategy presented in Section 2.1.3. This strategy re-
sults in solving one fourth-degree equation in one unknown
(see Section 2.2 in the main paper).

3. Extraction of the focal length
In this section we present formulas for extracting the focal
length from a given fundamental matrix F for two cases

1. E = F K

2. E = K F K

where K = diag(f, f, 1) is a diagonal calibration matrix.
Unlike most of the existing formulas and methods for ex-
tracting the focal length from the fundamental matrix F, the
presented formulas contain directly elements of the funda-
mental matrix. They don’t require an SVD decomposition
of the fundamental matrix or computation of the epipoles.

3.1. E+f problem

Here we will assume that the principal points [2] are at the
origin (which can be always achieved by shifting the known
principal points) and use the recent result [3, Lemma 5.1]
which we restate in our notation:

Lemma 3.1 Let F be a fundamental matrix of the form that
satisfies E = F K. Then there are exactly two pairs of
essential matrix and focal length (X = E, f) and (X =
diag(−1,−1, 1)E, −f). The positive f is recovered from
F = [fij ]1≤i,j≤3 by the following formula

f
2

=
f23f2

31 + f23f2
32 − 2f21f31f33 − 2f22f32f33 − f23f2

33

2f11f13f21 + 2f12f13f22 − f23(f2
11 − f2

12 + f2
13 + f2

21 + f2
22 + f2

23

3.2. f+E+f problem
To derive formulas for the extraction of f from F com-
puted from images with the same unknown focal length,
we follow methods developed in [3]. In this case, the re-
sult is the following formula for f2, namely: −f2

13f32f33 −

f2
23f32f33+f12f13f2

33+f22f23f2
33 quantity divided by f11f13f31f32+

f21f23f31f32 + f12f13f2
32 + f22f23f2

32 − f11f12f31f33 − f21f22f31f33 −

f2
12f32f33 −f2

22f32f33) , which can be obtained by the following
Macaulay2 code

R = QQ[f,f11,f12,f13,f21,f22,f23,f31,f32,f33]
F = matrix{{f11,f12,f13},{f21,f22,f23},

{f31,f32,f33}};
K = matrix{{f, 0, 0}, {0, f, 0}, {0, 0, 1}};
E = K*F*K;



G = ideal(det(E))+minors(1,2*E*transpose(E)*E
-trace(E*transpose(E))*E);

Gs = saturate(G,ideal(f));
gse = flatten entries mingens gb Gs;
cofs = g->coefficients(g,Variables=>{f});
cofsg = apply(gse,cofs);
cofsg_2

4. The elimination ideal for the E+f problem
We consider the E+f problem from Section 3.2, i.e. the
problem of estimating epipolar geometry of one calibrated
and one up to focal length calibrated camera. Here, in this
case

E = F K, (9)

where K = diag(f, f, 1) is a diagonal calibration matrix
for the first camera, containing the unknown focal length f .
Here, F is the 3×3 fundamental matrix and E is the 3×3
essential matrix [2]

For the E+f problem, we have the ideal I ⊂
C [f11, f12, f13, f21, f22, f23, f31, f32, f33, f ] generated by
ten equations, one cubic from the rank constraint

det(F) = 0, (10)

and nine polynomials from the trace constraint

2 F Q F>F− trace(F Q F>)F = 0, (11)

where Q = K K.
For this problem, the new elimination strat-

egy from Section 2.1.3 leads to computing the
generators of the elimination ideal If = I ∩
C [f11, f12, f13, f21, f22, f23, f31, f32, f33], i.e. the genera-
tors that do not contain f . To compute these generators we
can use the following Macaulay2 [4] code:

R = QQ[f,f11,f12,f13,f21,f22,f23,f31,f32,f33];
F = matrix {{f11,f12,f13},{f21,f22,f23},
{f31,f32,f33}};
K = matrix {{f,0,0},{0,f,0},{0,0,1}};
E = F*K;
I = minors(1,2*E*transpose(E)*E

-trace(E*transpose(E))*E)+ideal(det(E));
G = eliminate({f},saturate(I,ideal(f)))
dim G, degree G, mingens G

For the E+f problem, the variety G has dimension 6 and
degree 9 in P8 and is defined by one cubic and three quar-
tics. It can be verified that these four polynomials corre-
spond to the four maximal minors of the 3×4 matrix: f11 f12 f13 f21f31 + f22f32 + f23f33

f21 f22 f23 −f11f31 − f12f32 − f13f33
f31 f32 f33 0

 . (12)
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Figure 1. Sparsity patterns for the solvers to the f+E+f prob-
lem: (a) state-of-the-art 31×46 Kukelova08 [5] solver (b) the new
21×36 EI-fEf solver.
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Figure 2. Sparsity patterns for the solvers to the E+f problem:
(a) state-of-the-art 21×30 Bujnak09 [6] solver (b) the new 6×9
EI-Ef solver.

5. Sparsity patterns of solvers

Here, we show a comparison of the sparsity patterns of our
new elimination-based solvers (EI-fEf, EI-Ef, EI-Efk) and
of the SOTA solvers [5, 6, 7].

Figure 1 shows the sparsity patterns of the (a) state-of-
the-art (SOTA) 31×46 Kukelova08 [5] solver for the f+E+f
problem and (b) the new 21×36 EI-fEf solver for this prob-
lem. In this case the new EI-fEf solver is not only smaller
but also sparser. The ratio of the number of non-zero el-
ements of the 31×46 template matrix of the SOTA solver
Kukelova08 [5] (nzS) and the number of non-zero elements
of the 21×36 matrix of the EI-fEf solver (nzEI ) is 3.

Figure 2 shows the sparsity patterns of the (a) SOTA 21×
30 Bujnak09 [6] solver and (b) the new 6×15 EI-Ef solver
for the E+f problem. Here the ratio of the number of non-
zero elements of the template matrix of the SOTA solver [6]
and the number of non-zero elements of the template matrix
of our new EI-Ef solver is 5.2.

Finally, Figure 3 shows the sparsity patterns of the (a)
SOTA 200×231 Kuang14 [7] solver and (b) the new 51×
70 EI-Efk solver for the E+f+k problem. Here, the ratio
nzS/nzEI is approximately 2.8.

6. Noise experiment for the E+f+k problem

Next, Figure 4 shows the results of experiments with
noise simulation for the E+f+k problem. We show the es-
timated radial distortion parameters for the ground truth ra-
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Figure 3. Sparsity patterns for the solvers to the E+f+k prob-
lem: (a) state-of-the-art 200×231 Kuang14 [7] solver (b) the new
51×70 EI-Efk solver.
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the new EI-Efk solver
(blue) with the SOTA
Kuang14 [7] solver (red).
Boxplots of estimated λ’s
for different noise levels
and λgt = −0.3

dial distortion λgt = −0.3 and 200 runs for each noise level.
We compared our new E+f+k solver with the SOTA Kuang
solver [7]. Figure 4 shows resuts by MATLAB boxplot.
In the presence of noise, our new EI-Efk solver (blue)
gives similar or even better estimates than the SOTA solver
Kuang14 [7] for which we observed more failures (crosses).
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