Supplementary

This supplementary document provides additional qual-
itative and quantitative results that provide further insights
into the results discussed in the main paper. A more de-
tailed description of the datasets is given in § I and the pose
clusters discussed in § 3.1 of the main paper are visualized
in § II. Additional experimental results and visualizations
that show the effectiveness of different components of our
framework are given in § III and § IV, respectively.

I. Datasets
I.1. IMDB

We created the IMDB database to train the actor clas-
sifier in the movie scenario. The scenario is different from
most of the person recognition in that the test set contains
a single movie with lesser variation in appearance between
multiple instances of an actor in terms of age, style of cloth-
ing, etc. We assume that there are no labeled images within
the movie and hence training data is not a part of the movie.
To create a training set, the images are collected from the
IMDB profile? of actors appearing in the movie, which are
then manually cropped and annotated. Few images from
IMDB database are shown in Figure 12. We relied on
text tags associated with photos for annotation whenever the
photos contain multiple confusing identities. Apart from il-
lumination, resolution, and pose variations, there is a large
age variations among IMDB instances. In addition, there is
a large domain contrast between IMDB and Hannah test
set in terms of lighting, camera and imaging conditions.
This creates a more challenging setting to match identites
between IMDB and Hannah instances.

I.2. Soccer

Soccer is another scenario where there are a significant
number of frames in which the face is not visible and the
subjects are often occluded by other players. We show more
examples from our soccer dataset in Figure 14. In many in-
stances, head is largely occluded, and in back-view unlike
PIPA and Hannah instances, which contain visible head and
torso regions. Also, soccer instances exhibit large body de-
formations, are of low resolution with significant blur. The
soccer dataset therefore offers different kinds of challenges
for recognition that are not seen in PIPA and Hannah.

I1. Pose clusters

We obtain a set of prominent views to facilitate pose-
specific representations as discussed in § 3.1. To achieve
this, we annotated 14 body keypoints for 29,223 PIPA
train instances which are then used for clustering. More

2http://www.imdb.com/title/tt0091167/
fullcredits

Figure 12: IMDB: Each row shows few images of an actor
from the dataset. We used IMDB dataset to train classifiers
for actor recognition in the Hannah movie.

Figure 13: Pose clusters: Each row from top to bottom
shows people from PIPA with particular body orientation
clustered using orientation and keypoint visibility features.


http://www.imdb.com/title/tt0091167/fullcredits
http://www.imdb.com/title/tt0091167/fullcredits

Figure 14: Images from soccer dataset. It offers a challenging person recognition scenario due to low resolution, high
occlusion, deformation and motion blur exhibited by soccer instances.

examples of our pose clusters are shown in Figure 13.
Each row from top to bottom contain images from right,
semi-right, frontal, semi-left, left, back
and partial body views. The orientation and keypoint
visibility features produced tight clusters containing images
with particular body orientation. The last cluster captures
the instances with partial upper body such as head or shoul-
der, etc, in the images that are commonly seen in social me-
dia photos and movies. While we considered seven promi-
nent views in this work, we note that generating a large
number of views can be helpful, provided there are enough
training samples in each cluster to train the convnets.

II1. Quantitative Results and Analysis

We provide more insightful results that help to under-
stand merits and challenges of different recognition settings
that are considered.

Recognition per subject: Figure 15 shows the number
of images for each actor in IMDB and Hannah test sets
along with their individual recognition performances. We
observe that, for those subjects with sufficiently large num-
ber of training instances (Michael Caine, Barbara Harshey,
Woody Allen, Julia Louis-Dreyfus, and Mia Farrow), the
performance is high as expected. For subjects with less
than 20 training instances, the performance is very low.
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Figure 15: Number of images for each actor in (top) IMDB
and (middle) Hannah movie test set. We show the (bottom)
recognition performance of each actor on the test set.

However, whenever there is a large difference in age be-
tween train and test instances (Carrie Fisher, Dianne West,
Richard Jenkins), the performance is poor despite having
enough training examples.

Similarly, we show the statistics of soccer players along
with their individual performances in Figure 16. We see
a similar trend of high performance for subjects (Gonzalo
Huguain and Rodrigo Palacio) with sufficient training in-
stances. We also observe a near 100% accuracy for goal
keepers (Manuel Neuer and Sergio Romero) and the referee
due to clothing cues, which are discussed next.

Recognition performance of top subjects: We com-
pare the recognition performance of various approaches on
5 most occurring movie and soccer subjects in Figure 17
and Figure 18, respectively. Our approach reaches an accu-
racy of 61.17% on top actors, which is significantly better
than naeil. Note that the overall performance of naeil
with 17 models is comparable to head and upper body. Un-
like photo-albums, clues such as scene and human attributes
like age, glasses, and hair color are less useful in the movie
setting. For actors with less change in appearance over time
(Michael Caine and Woody Allen: See row three and five in
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Figure 16: Number of images for each player in the training
(top) and test (middle) split of Soccer dataset. We also show
the (bottom) recognition performance of each player.

Figure 12), face is found to be extremely informative and
robust compared to head.

On the soccer dataset, the overall performance is poor
for all the approaches. This suggest to develop better repre-
sentations that are able to recognize people at a distance.

How informative is clothing? Though it is intuitively
obvious that clothing helps in recognition, a qualitative
evaluation is not done previously. We perform such a study
using the soccer dataset. We show the performance of dif-
ferent approaches on three subjects (Manuel Neuer, Sergio
Romero and Referee) with unique clothing in Figure 19. The
first two subjects are the goal keepers of the Germany and
Argentina, respectively.

As seen in Figure 19, upper body region, which is often
less informative compared to head, outperforms head by a
large margin due to clothing. The concatenation of head and
upper body obtained through separate training is worse than
upper body feature alone. On the other hand, the concatena-
tion of features using jointly trained model is more robust
and performs much better as it provide more flexibility to
focus on selective regions. Finally, the overall performance
of pose aware models and naeil are identical.
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Figure 17: Recognition performance of five lead actors in
Hannah dataset.
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Figure 18: Recognition performance of five most occurring
players in Soccer dataset.

It is interesting to note that, convnets that are trained
for identity recognition can distinguish clothing without any
explicit modeling or hand-crafted features [29].

Confusion between identities: We show the recogni-
tion confusion matrix for Hannah and Soccer datasets in
Figure 21 and Figure 22 respectively, with and without
tracking. We notice two important points related to gender
and clothing. As seen from Figure 21, female subjects are
mostly getting confused with female subjects, and similarly
the male subjects are confused with male subjects. In Fig-
ure 22, we notice that players from each team are mislabeled
with the members from the same team. These studies show
the effectiveness of convnets in capturing human attributes
without any explicit training. Finally, majority voting over
a track helps to produce consistent predictions.

Domain gap: To understand the effect of domain con-
trast between train and test instances, we conduct an ex-
periment adding different number of Hannah instances per
subject to the IMDB training gallery. The results are shown
in Figure 20. As seen from the graph, the addition of even
a few instances from the test domain results in a very large
improvement in the recognition performance.
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Figure 19: Effect of clothing on recognition.
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Figure 20: Recognition performance of Hannah movie set
using IMDB plus samples from the Hannah test set.

IV. Qualitative Results

We show some qualitative results in Figures 23 to 27.
Figure 23 shows the success and failure cases of joint train-
ing and separate training of body regions. We notice an
over-influence of clothing while using separately trained
and concatenated regional features, compared to the jointly
training features. In Figure 24, we show the effectiveness
of using multiple classifiers from each PSM. As seen in the
figure, the concatenated head and upper body features (F)
may predict incorrect labels even when one (or two) of these
features predict correctly, due to the over influence of less
informative body region. Combining these three features is
found to be more robust.

We show the top scoring predictions obtained from each
pose-specific PSM in Figure 25. It clearly shows how each
PSM helps in the prediction of instances in that particular
pose when the base model is unable to predict correctly. Fi-
nally, we show the success and failure cases of our approach
on Hannah and Soccer datasets in Figure 26 and Figure 27
respectively, and compare with the naeil.
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Figure 21: Confusion matrix on Hannah dataset (top) with and (bottom) without tracking.
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Figure 22: Confusion matrix on Soccer dataset (top) with and (bottom) without tracking.



Figure 23: Success and failure cases of separate and joint training of body regions on PIPA dataset. Column one shows the
test images and the column two shows the training images belonging to the predicted subject. (Left) shows the success and
failure case of joint training (JT) and separate training (ST), respectively and the reverse is shown in (right).



Figure 24: Effectiveness of multiple classifiers from each PSM: Column one shows the PIPA test images and the column
two shows the training images belonging to the predicted subject using different approaches. The four approaches considered
are the classifiers trained on head (F3) and upper body (F,) features, a classifier trained on concatenated head and upper body
(F) feature, and linear combination of three classifiers (3 ,) trained on these features. It clearly shows that it is advantageous
to consider individual classifiers trained on regional features and their combination for improved performance.
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Figure 25: Success cases of pose-specific models (PSMs) on PIPA dataset. Each row shows the success predictions of our
approach where the improvement is obtained primarily due to the specific-pose model i.e., base model wrongly predicts but
base + correct PSM predicts correctly. Green and yellow boxes indicate the success and failure result of naei 1 respectively.



Figure 26: Comparison of our approach with naeil on Hannah dataset. Column one shows the test images and the column
two shows the training images belonging to the predicted subject. (Left) in green shows the success case of our approach and
the failure case of naeil. (Right) in red shows the failure case of our approach and the success case of naeil.



Figure 27: Comparison of our approach with naeil on Soccer dataset. Column one shows the test images and the column
two shows the training images belonging to the predicted subject. (Left) in green shows the success case of our approach and
the failure case of naeil. (Right) in red shows the failure case of our approach and the success case of naeil.



