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1. Network Details
In this section, we describe the additional details of the network architecture of DESIRE. We summarize the full details in

Table. 1 and discuss them in the following subsections.

1.1. Convolutional Neural Networks for Static Scene Context

We use a CNN to encode the static spatial context of the scene. For the KITTI dataset, two convolutional layers (conv1 and
conv2) with ReLU activation are employed. For the SDD dataset, we add an additional convolution layer. We adopt a relatively
shallow CNN for an ease of training, but a deeper network could be adopted with a use of pre-trained network parameters.

1.2. RNN Encoder 1

RNN Encoder 1 is responsible for encoding the past motion of the individual agent. The encoder is implemented with a
temporal convolution layer (a.k.a, 1D convolution) that is followed by an RNN with GRU cells [1]. Before putting the past
trajectory (Xi) to the temporal convolution layer, we subtract the last state value (present location) from xi,t at all time steps
for a translation invariance. The temporal convolution layer has a kernel with 3 frames and 16 channel outputs. The GRU
RNN has a 48 dimensional hidden vector, where the initial hidden vector is padded with 0.

1.3. Conditional Variational Auto-encoder

The CVAE module is composed of a recognition network Qφ(zi|Yi, Xi), a prior network Pν(zi), and a generation network
Pθ(Yi|Xi, zi).

• Qφ(zi|Yi, Xi) is implemented with a neural network that generates a latent variable zi given the encodings of Xi and Yi.
The output of RNN Encoder 1 (HXi

) is used as the encoding of Xi. We implement a similar network to provide the encoding
of Yi through RNN encoder 2 that outputs a 48 dimensional encoding (HYi

). Similarly, we use a temporal convolution layer
and GRU with the parameters specified in Table. 1. HXi andHYi are concatenated and passed through three fully connected
layers to produce µi and σi. We sample 48 dimensional z(k)i using the reparameterization trick [2], i.e., z(k)i = µi+σi�ε

(k)
i ,

ε
(k)
i ∼ N (0, 1). During the testing phase, we randomly draw z

(k)
i from the prior distribution Pν(zi) := N (0, 1).

• Pθ(Yi|Xi, zi) is implemented with another GRU-RNN (RNN decoder 1) that takes bothHXi
and z(k)i as inputs. The two

inputs are mixed together as discussed in the paper. The mixed vector xz(k)i is provided as the input of the RNN decoder 1
at initial time frame, and all the other inputs at later time steps are padded with 0. The initial hidden vector of the RNN
is initialized with 0. The RNN decoder 1 is implemented with a GRU with 48 dimensional hidden vector that is followed
by a fully connected (fc) layer that produces 2 dimensional state reconstruction at every time frame. Instead of directly
reconstructing the absolute state (location), we estimate the displacement relative to the previous time step and add them to
the pervious state. We share the parameter of the fc layer over all time steps.
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Layer Type Input (dimensions) Output (dimensions) Additional Parameters

CNN ρ(I)

2D-Convolution I , (H,W, 4) conv1, (H/2,W/2, 16) act:=ReLU, kernel:= (5, 5), stride:=2
2D-Convolution conv1, (H/2,W/2, 16) conv2, (H/2,W/2, 32) act:=ReLU, kernel:= (5, 5), stride:=1
2D-Convolution conv2, (H/2,W/2, 32) conv3, (H/2,W/2, 32) act:=ReLU, kernel:= (5, 5), stride:=1

RNN Encoder 1

1D-Convolution Xi, (2, 20) tXi, (16, 20) kernel:=(3), act:=ReLU
GRU tXi (16, 20) HXi (48) RNN length:=20

Conditional Variational Auto-encoder
RNN Encoder 2 (training phase)

1D-Convolution Yi, (2, 40) tYi, (16, 40) kernel:=(1), act:=ReLU
GRU tYi, (16, 40) HYi , (48) RNN length:=40

Q distribution (training phase)
Concat. HXi ,HYi , (48), (48) HXYi , 96 -
Fully-connected HXYi , (96) fc1i , (48) act:=ReLU
Fully-connected fc1i , (48) fcµi , (48) act:=Linear
Fully-connected fc1i , (48) fcσi , (48) act:= 1

2
exp(·)

Reparam. trick fcµi , fcσi , (48), (48) z
(k)
i , 48 z

(k)
i = µi + σi � ε

(k)
i , ε(k)i ∼ N (0, 1)

Q distribution (testing phase)
Random. - z

(k)
i , (48) z

(k)
i ∼ N (0, 1)

Sample Reconstruction
Fully-connected zi, (48) fczi , (48) act:=Linear
Softmax fczi , (48) β(zi), (48) -
Multiplication HXi , β(zi), (48), (48) xz

(k)
i HXi � β(z

(k)
i )

GRU xz
(k)
i , (48) hxz

(k)
i,t , (48)× 40 RNN length:=40

Fully-connected hxz
(k)
i,t , (48) ŷ

(k)
i,t , (2) act:=Linear

IOC Ranking and Refinement
Scene Context Fusion

Feature-pooling ρ(I), ŷ(k)i,t , (H/2,W/2, 32), (2) p
(k)
i,t , (32) Pool the features at ŷ(k)i,t

Fully-connected v̂
(k)
i,t , (2) fv

(k)
i,t , (16) act:= ReLU

Social-pooling ŷ
(k)
i,t−1, ŷ(l)j,t−1, h

(l)
j,t−i∀j 6= i,∀l sp

(k)
i,t , (6× 6× 48) pool := Average

Fully-connected sp
(k)
i,t , (6× 6× 48) fsp

(k)
i,t , (48) act:= ReLU

Concat. p
(k)
i,t , fv(k)i,t , fsp(k)i,t , (32), (16), (48) scf

(k)
i,t , (96) -

RNN Decoder 2
GRU scf

(k)
i,t , (96)× 40 h

(k)
i,t , (48)× 40 RNN length:=40, h(k)

i,0 = HXi∀k
Fully-connected h

(k)
i,t , (48) ψ

(k)
i,t , (1) act:= Linear

Fully-connected h
(k)
i,T , (48) 4Ŷ (k)

i , (2, 40) act:= ReLU
Table 1. Detailed architecture of DESIRE.

1.4. IOC Ranking and Refinement

The IOC ranking and refinement module is implemented with an RNN that takes the outputs of the Scene Context Fusion
(SCF) unit as an input at each time step. The past motion contextHXi

is provided as the initial hidden vector of the RNN. The
RNN is implemented with 48 dimensional GRU that is followed by a fc layer that produces one dimensional score output at
each time step and another fc layer that yields the 2× 40 dimensional regression vector4Ŷ (k)

i at the last time step.
Scene Context Fusion: The SCF unit combines velocity of prediction sample at each time step, surrounding static scene
context through the feature pooled from the CNN, and dynamic scene context through our social pooling layer. The velocity
feature is obtained by passing the raw velocity v̂(k)i,t at each time step through a fc layer with 16 dimensional outputs and ReLU
activation. The static scene feature is obtained by pooling the 32 dimensional feature vector from the corresponding location
(ŷ(k)i,t ) of the last convolution layer of the CNN (conv2 for KITTI and conv3 for SDD). The social pooling layer aggregates
the contextual information about how the other agents are moving with respect to an agent. We implement the layer with a



log-polar grid which has 6 radial bins and 6 angular bins. The radial bins are discretized in a log space with minimum and
maximum distance (dmin, dmax). We use (0.5 m, 4 m) for the KITTI dataset and (1 pixel, 40 pixel) for the SDD dataset.
The hidden vectors of each prediction sample are aggregated though an average pooling operation within a grid. The three
vectors are concatenated and provided as an input of the GRU at each time step.

2. Additional Qualitative Examples
2.1. Qualitative Examples for KITTI Results

DESIRE considers potential long-term future rewards formulated as an IOC framework. Thus, DESIRE produces more
accurate prediction than other baselines such as RNN Encoder-Decoders (with or without SCF) which often behave reactively
(as depicted in Fig. 1 - Row 1, 2, 3, 4). Moreover, DESIRE shows higher robustness than other comparing methods in terms of
modeling multi-modalities (Fig. 1 - Row 5) and interaction with other agents (Fig. 1 - Row 6, 7).

2.2. Qualitative Examples for SDD Results

Compared to KITTI Dataset, SDD is a much larger dataset that contains a larger number agents and more complex
interactions between agents. In order to highlight the differences and show the improvement of DESIRE over other methods,
we present qualitative examples by grouping them into two categories: 1) Fig. 2 - Left: DESIREs present accurate long-term
predictions in that they accumulate potential future rewards via IOC framework. On the other hand, RNN Encoder-Decoders
do not tend to incorporate scene context well in advance, producing much reactive predictions (e.g., predictions are often
made over a region that is not crossable or not frequently visited). 2) Fig. 2 - Right: Compared to DESIRE-S, DESIRE-SI
accounts for potential interaction between agents while making predictions. For example, Row 1, 5 in Fig. 2 - (Right) show
DESIRE-SI’s capability of avoiding other agents, and Row 2, 3, 6, 7, 8 in Fig. 2 - (Right) show DESIRE’s characteristic of
being able to follow other agents in consideration of scene context together.

We provide more qualitative examples in Fig. 3 to further show the reliability of DESIRE under various situations. DESIRE
shows superior prediction performance over other methods by reasoning about multiple cues (i.e., past motions, scene context
and interactions) that affect the agents’ behavior in the future. For example, Row 1, 2, 3, 4 in the left of Fig. 3 show that
DESIRE-SI predicts more accruately than other methods, by anticipating the predictive behavior of a group of other agents
present in the scene. To be more specific, Row 2, 3 in the right of Fig. 3 show that DESIRE-SI produces more accurate
prediction by avoiding a potential collision to other agents. In addition, it is also seen from the last rows in both Left and Right
of Fig. 3 that DESIRE-SI successfully models to predict behaviors of multiple agents, i.e., two close agents present similar
motions that follow each other.

2.3. Failure Cases

DESIRE produces multiple prediction hypotheses to address the uncertainty inherent in future prediction during the sample
generation process. Admittedly, however, there are some cases in which DESIRE does not produce a prediction close to the
ground-truth. For example, DESIRE may not cover all plausible paths where multiple choices are valid (e.g., DESIRE chooses
an adjacent exit when approaching to a large round-about (e.g., Row 3 in Fig. 5 - Left)). In addition, DESIRE often fails to
generate the ground truth prediction for an agent when the agent is making a sudden route change (e.g., an agent suddenly
turns around or deviates the course (e.g., Row 1, 2 in Fig. 5 - Right)). We provide some qualitative examples where DESIRE
fails to produce accurate predictions for both KITTI and SDD, in Fig. 4 and Fig. 5, respectively.
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Figure 1. Qualitative examples for KITTI results. (Row 1, 2, 3, 4) The predictions produced by RNN Encoder-Decoders (middle) are too
reactive (i.e., they often make sudden turns when the vehicle almost hits non-drivable region). On the other hand, the predictions produced
by DESIRE are smooth and more accurate to the ground-truth as it considers long-term future rewards. (Row 5) There are three routes
available, and DESIRE produces a correct path prediction, whereas RNN Encoder-Decoder chooses an incorrect path which is far from the
ground-truth. (Row 6, 7) DESIRE-SI produces more accurate predictions than other baselines in the presence of other agents. DESIRE-SI
exploits the interaction between other agents far better than other baselines through the Scene Context Fusion.
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Figure 2. Qualitative examples for SDD results. (Left) Comparisons between RNN Encoder-Decoders and DESIREs. Note that DESIREs
result in predictions much closer to the actual ground-truth as they reflect scene context much better than RNN Encoder-Decoders via IOC
framework. (Right) Comparisons between DESIRE-SI and DESIRE-S. DESIRE-SI incorporates interaction between agents as well as the
static scene context, producing more accurate prediction results than DESIRE-S.
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Figure 3. Additional qualitative examples for SDD results. DESIRE-SI enables more accurate predictions compared to RNN Encoder-
Decoders or DESIRE-S, as it produces the future prediction by jointly reasoning from various cues that affect the behavior of multiple
agents, such as the past dynamics, the static scene context and the interaction between agents.
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Figure 4. Selected failure cases from KITTI Dataset. Due to multi-modalities inherent in the future prediction, DESIRE may not provide the
GT prediction when there are multiple plausible paths. (Row 1) For a car approaching toward an intersection, DESIRE predicts to keep
forward. (Row 2) DESIRE chooses to make a left turn to enter a parking lot. (Row 3) DESIRE chooses to make a left turn whereas the
actual ground-truth makes a right turn. (Row 4) There are two possible paths for a vehicle, and DESIRE chooses to take a left lane.
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Figure 5. Selected failure cases from SDD. (Left) DESIRE may not always produce a prediction close to the ground-truth when multiple
plausible paths are valid (i.e., multi-modalities of future prediction). (Right) DESIRE may not produce accurate prediction under abrupt
motion changes.


