
Supplemental Document for Deep Photo Style Transfer

Fujun Luan
Cornell University

fujun@cs.cornell.edu

Sylvain Paris
Adobe

sparis@adobe.com

Eli Shechtman
Adobe

elishe@adobe.com

Kavita Bala
Cornell University
kb@cs.cornell.edu

This document contains: links to two user studies (section 1), comparison against Wu et al. [6] (section 2), results with
only semantic segmentation or photorealism regularization (section 3), merging classes for DilatedNet [1] Segmentation
(section 4), a solution for handling noisy (section 5) or high-resolution (section 6) input, an extension for CNNMRF in
photographic transfer (section 7), and some ideas we came up with, but ultimately did not work well, before reaching the
matting Laplacian solution (section 8).

1. User Studies
We provide the links to our user studies that contain the interfaces as well as all the images we used:

• Photorealism evaluation: survey1, survey2;

• Style transfer comparison: survey.

2. Comparison against Wu et al. [6]

(a) Input image (b) Reference style image (c) Wu et al. [6] (d) Ours

Figure 1: Comparison of our method against Wu et al. [6]. Our method is more flexible in handling spatially-varying color
changes.

https://www.surveymonkey.com/r/photorealism
https://www.surveymonkey.com/r/photorealism2
https://www.surveymonkey.com/r/style_transfer


3. Effects of Photorealism Regularization and Semantic Segmentation

(a) Input image (b) Reference style image (c) Without photorealism (d) Without segmentation (e) Our result

Figure 2: Transferring the style of (b) to (a). Without photorealism regularization, distortion remains in (c). Without semantic
segmentation, wrong texture appears in (d). Combining the two components yields (e).

4. Merging Classes for DilatedNet [1] Segmentation
We merge similar classes to make the segmentation map simpler and cleaner. In particular, we merge the following classes:

• Water class: ’water’, ’sea’, ’river’, ’lake’;

• Tree class: ’plant’, ’grass’, ’tree’, ’fence’;

• Building class: ’house’, ’building’, ’skyscraper’, ’wall’, ’hovel’, ’tower’;

• Road class: ’road’, ’path’, ’sidewalk’, ’sand’, ’hill’, ’earth’, ’field’, ’land’, ’grandstand’, ’stage’, ’dirt track’;

• Roof class: ’awning’, ’ceiling’;

• Mountain class: ’mountain’, ’rock’,

• Stair class: ’stairway’, ’stairs’, ’step’;

• Chair class: "chair’, ’seat’, ’armchair’, ’sofa’, ’bench’, ’swivel chair’;

• Vehicle class: ’car’, ’bus’, ’truck’, ’van’.



5. Handling Noisy Input
The photorealism regularizer might magnify the noise of the input image, such as JPEG compression noise or quantization

noise, and lead to visible artifacts in the output by under constraining the locally affine matrices. We address this problem
using a simple, yet efficient solution: after the optimization iterations are done, we fit the local regression of each patch to
obtain optimal parameters for each locally affine model. Then we use a joint-bilateral filter guided by the input image to
smooth out the noise across the coefficients of the locally affine matrices and reconstruct the output image free of noise. We
illustrate its effect in Figure 3.

(a) Input image (b) Reference style image

(c) Our result (d) Our result w. noise removed

Figure 3: Transferring a dark-red style (b) onto a photo (a) at the golden hour. The JPEG noise in (a) leads to visible artifacts
in our result (c). Our proposed method removes the noise and produces (d).

6. Handling High-Resolution Input
Due to the memory limitation of current GPU devices (e.g., 12GB), current style transfer algorithms that use deep convolu-

tional neural networks such as Neural Style [2] or CNNMRF [3] can not support high-resolution images (e.g., 3500× 2340).
Nonetheless, we can still handle high-resolution inputs using a similar idea from 5. That is, we run the core style transfer
algorithm in GPU using the small-resolution images (e.g, 700 × 468), and then fit the optimal locally affine models for each
patch. After that we use joint-bilateral upsampling to upsample the optimal local affine models under the guidance of the
high-resolution input to reconstruct a high-resolution output. We show five such high-resolution results in Figure 4, 5, 6, 7,
and 8.



(a) Input image (3500× 2340)

(b) Output image (3500× 2340)

Figure 4: High-resolution example.



(a) Input image (3500× 2340)

(b) Output image (3500× 2340)

Figure 5: High-resolution example.



(a) Input image (3500× 2185)

(b) Output image (3500× 2185)

Figure 6: High-resolution example.



(a) Input image (3500× 2625)

(b) Output image (3500× 2625)

Figure 7: High-resolution example.



(a) Input image (3500× 2330)

(b) Output image (3500× 2330)

Figure 8: High-resolution example.



7. Photorealism Regularization for CNNMRF

In this section, we demonstrate that our photorealism regularization can be applied as a separate component, not limited
to Neural Style but also other deep-learning style transfer algorithms. For instance, we can augment CNNMRF by adding the
photorealism regularization layer and backpropagate gradients with its penalty (denoted as CNNMRF+), producing photore-
alistic results (Figure 9(c)).

(a) Input image (b) Reference style image

(c) CNNMRF+

Figure 9: Our photorealism regularization can be applied as a separate component in other style transfer algorithms such as
CNNMRF.



8. Ideas That Did Not Work
While our approach may seem relatively simple, it was discovered after various efforts that fared poorly. We describe

several of these failed attempts to better explore our understanding of the difficulty of the problem, and how that helped us
develop our final solution. The original algorithm by Gatys et al. [2] is complex and the origin of the painterly distortion is
not obvious, which makes it difficult to remove. For the task in Figure 10, we will show a few reasonable ideas we came up
with, but ultimately that did not work well, before reaching our final matting Laplacian solution.

(a) Input image (b) Reference style image

Figure 10: We seek to transfer the style of (b) Reference style image onto (a) Input image.

L2 norm of the color gradients. We modify the loss function as Ltotal =
∑L

l=1 α`L`
c + Γ

∑L
`=1 β`L`

s+ + τLg where

Lg[O] =
∑
i,j

((Oi,j+1 −Oi,j)
2 + (Oi+1,j −Oi,j)

2) (1)

The results are shown in Figure 11.

Neural Style + Shih et al. [4]. Shih et al. [4] proposed a multiscale portrait style transfer algorithm. However, this
algorithm is designed specifically for human portraits that utilizes a face landmark template to align faces. In order to apply
this to our problem, we need to align our style image onto the input image. This is done by using the Neural Style output as
the style image. The output of this algorithm is shown in Figure 12a.

Neural Style + Shih et al. [5] Shih et al. [5] proposed a locally affine transform for time-of-day hallucination. We adapt
this algorithm and fit the local regression using the input image and Neural Style output (as the target image). The output of
this algorithm is shown in Figure 12b.

Multiscale gain maps. We propose a solution of Neural Style + Shih et al. [4] and use a multiscale decomposition to our
task. For a Laplacian pyramid with n levels we have

Ll[I] =

{
I − I ⊗G(2), if l = 0

I ⊗G(2l)− I ⊗G(2l+1), if l > 0
(2)

and residual
R[I] = I ⊗G(2n). (3)

We define gain map as Gainl = Ll[O]/Ll[I] and represent O using I and Gain:

O = L0[O] + L1[O] + ...+ Ln−1[O] +R[O]

= L0[I]×Gain0 + L1[I]×Gain1 + ...+ Ln−1[I]×Gainn−1 +R[I]×Gainn
(4)



(a) τ = 10−6 (b) τ = 10−3

(c) τ = 10−1 (d) τ = 103

Figure 11: Regularizing the L2 norm of color gradients. There is no sweet spot that works. It either can’t prevent distortions
in (a)(b) or generates a half-transferred style in (c)(d).

(a) Neural Style + Shih et al. [4] (b) Neural Style + Shih et al. [5]

Figure 12: Using Neural Style output as the target image and applying Shih et al. [4] or Shih et al. [5] generate photorealistic
outputs but the style is not faithfully transferred.

Now the unknown are a set of Gain maps: {Gainl}. We can perform gradient descent on the Gain maps using the chain
rule:

dLtotal

dGainl
=

dLtotal

dO
× dO

dGainl
(5)



where Ltotal is the Neural Style loss. Assuming that Gain maps are independent of each other, we have

dO

dGainl
=

{
Ll[I], if l < n

R[I], if l = n
(6)

and dLtotal

dO the same as in Neural Style optimization.
We applied this idea onto Figure 10. We used n = 5 and obtained the final output as well as 18 Gain maps ((n + 1) × 3

for 6 layers with RGB channels):

Figure 13: Result of using multiscale gain maps. Note the high frequency artifacts.

Figure 14: Gain maps. Note the maps are not smooth due to high frequency components.



Band-limited multiscale gain maps. A reasonable next step from the multiscale gain maps idea is to apply band-limited
constraints onto the gain maps in the optimization. We tried several options: multiscale Gaussian post reconstruction, gradient
constraint of gain maps in the optimization, Gaussian filter on gain maps in the optimization, and Sinc filtering of gain maps
in the optimization.

• Multiscale Gaussian post reconstruction: Apply Gaussian filter on the gain maps and reconstruct the final output.

Figure 15: Result of multiscale Gaussian post reconstruction

Figure 16: Gain maps w. multiscale Gaussian post filtering.



• Gradient constraint on gain maps in the optimization: Apply L2-norm gradient constraint on the gain maps and multiply
a parameter τ to control the weight of it during the optimization, similar to Equation 1.

(a) τ = 101 (b) τ = 102

(c) τ = 103 (d) τ = 104

Figure 17: L2-norm gradient constraint on gain maps. Again, there is no sweet spot.

Figure 18: Gain maps using L2-norm gradient constraint on gain maps with τ = 103.



• Gaussian filter of gain maps in the optimization: Denote the histogram-matched output image as Oh. Modify 4 as

O = L0[I]×Gaussian(Gain0) +L1[I]×Gaussian(Gain1) + ...+Ln−1[I]×Gaussian(Gainn−1) +R[Oh] (7)

Figure 19: Result of Gaussian filter of gain maps in the optimization.

Figure 20: Gain maps w. Gaussian filter of gain maps in the optimization and residual maps of Oh (bottom-right 3 maps).



• Sinc filter of gain maps in the optimization: Denote the histogram-matched output image as Oh. Modify 4 as

O = L0[I]× Sinc(Gain0) + L1[I]× Sinc(Gain1) + ...+ Ln−1[I]× Sinc(Gainn−1) +R[Oh] (8)

where

Sinc(x) =

{
1, if x = 0
sin(x)

x , otherwise
(9)

Figure 21: Result of Sinc filter of gain maps in the optimization.

Figure 22: Gain maps w. Sinc filter of gain maps in the optimization and residual maps of Oh (bottom-right 3 maps).



Non-overlapping local affine patches in the optimization. We divide the image space into non-overlapping patches (e.g.,
5 × 5), and represent every patch in the output image Pk[O] as the local affine transform of the corresponding patch in the
input image Pk[I]. For a patch containing N pixels, Pk[·] is a 4×N matrix and each column represents the color of a pixel
augmented by one as (r, g, b, 1)ᵀ. The local affine model for the k-th patch is a 3× 4 matrix Ak.

For every patch, we represent output image patch Pk[O] using input image patch Pk[I] and a local affine model Ak:

Pk[O] = AkPk[I] (10)

Now the unknown are a set of local affine matrices {Ak}. We can perform gradient descent on the affine matrices using
the chain rule for every patch. However, due to the lack of constraint on neighboring patches, the result shows artifacts at the
boundary of patches as shown in Figure 23.

Figure 23: Result of non-overlapping local affine optimization. Note the "square" artifacts at the boundary of patches.

We further address this problem by introducing jointly-bilateral smoothing on the local affine matrices as a post-processing
step and reconstruct the output, as shown in Figure 24.

Figure 24: Result of non-overlapping local affine optimization w. post jointly-bilateral smoothing on local affine matrices.
Note the lights on the left building are off.

Final solution. Instead of converting the unknowns to be a set of local affine matrices, we still use gradient descent to
update the RGB pixels of the output image by introducing the overlapping locally-affine photorealism energy term into the
Neural Style optimization. We find it both preserves the photorealism and matches the style of the reference image well.



Figure 25: Our final solution.

References
[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915, 2016. 1, 2
[2] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2414–2423, 2016. 3, 10
[3] C. Li and M. Wand. Combining markov random fields and convolutional neural networks for image synthesis. arXiv preprint

arXiv:1601.04589, 2016. 3
[4] Y. Shih, S. Paris, C. Barnes, W. T. Freeman, and F. Durand. Style transfer for headshot portraits. 2014. 10, 11
[5] Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Data-driven hallucination of different times of day from a single outdoor photo. ACM

Transactions on Graphics (TOG), 32(6):200, 2013. 10, 11
[6] F. Wu, W. Dong, Y. Kong, X. Mei, J.-C. Paul, and X. Zhang. Content-based colour transfer. In Computer Graphics Forum, volume 32,

pages 190–203. Wiley Online Library, 2013. 1


