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Abstract

This supplementary material provides additional exper-
imental results as well as some implementation aspects of
the proposed method, which cannot be accommodated in
the main paper due to page limitation.

1. More experimental results

1.1. Analysis of individual modules

While we reported EER and rank-1 identification rate for
analyzing individual modules, we provide ROC curves be-
fore and after z-normalization, and CMC curves both for
OUTD-B and OU-LP-Bagβ in Fig. 1 in this supplemen-
tary material. In addition, we also report summaries includ-
ing not only EER and rank-1 identification rate but also area
under curve (AUC) of the ROC curve and rank-5 identifica-
tion rates of the CMC curve, both for training/testing sets
and OUTD-B and OU-LP-Bagβ in Table1.

Similarly to the results reported in the main paper, it
turns out that JIS-ML (Ranking SVM) yielded the best
or the second best accuracies, and JIS-ML (Linear SVM)
yielded the best accuracy for the test set of OU-LP-Bagβ
and for the training set in the verification mode (i.e., the
lowest EER and AUC), which is reasonable by taking the
properties of linear SVM and ranking SVM into account.

1.2. Sensitivity analysis

In this section, we provide results of sensitivity analy-
sis of the hyper-parameters on the accuracies, i.e., EERs
with z-normalization (denoted as z-EER). Specifically, we
consider the soft margin parameterC in Eq. (16), the co-
efficientλS for regularizing the spatial metric in Eq. (17),
the coefficientλI for regularizing the joint intensity metric
in Eq. (20), and down-sampling rate (i.e., the number of
spatial bins, and the number of intensity bins) as the hyper-
parameters, and show EERs with z-normalization over the
hyper-parameters in Fig.2.

w/o ML S-ML (Linear SVM) JI-ML (Linear SVM) JIS-ML (Linear SVM)

S-ML (Ranking SVM) JI-ML (Ranking SVM) JIS-ML (Ranking SVM)

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4

F
R
R

FAR

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4

F
R
R

FAR

(a) ROC curves without z-normalization
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(b) ROC curves with z-normalization
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(c) CMC curves
Figure 1.ROC and CMC curves for individual metric learning and
solvers (left: OUTD-B, right: OU-LP-Bagβ).

As a result, the accuracies do not significantly change
within a range from 0.1 to 10 as for the soft margin parame-
terC (Fig. 2(a)). On the other hand, the accuracies drop as
the regularization coefficientsλS andλI decrease, in par-
ticular for the spatial regularization coefficientλS and in
case of small number of training subjects (i.e., OUTD-B) as
shown in Fig.2(b). This demonstrates the necessity of the
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Table 1.Results for individual metric learning and solvers. Rank-
1 and Rank-5 indicate rank-1 and rank-5 identification rates [%],
respectively. Bold and Italic bold indicate the best and the second
best accuracies.

(a-1) OUTD-B (Test set)
Method EER AUC Rank-1 Rank-5
w/o ML 26.3 17.6 61.6 86.1
S-ML (linear SVM) 27.2 19.5 12.0 43.9
JI-ML (linear SVM) 13.9 6.0 67.9 89.1
JIS-ML (linear SVM) 14.5 7.2 56.4 85.6
S-ML (rank SVM) 14.6 7.2 60.2 87.9
JI-ML (rank SVM) 13.4 5.8 71.5 93.6
JIS-ML (rank SVM) 11.0 4.1 74.5 94.0

(a-2) OUTD-B (Training set)
Method EER AUC Rank-1 Rank-5
w/o ML 27.2 19.3 72.3 92.5
S-ML (linear SVM) 7.0 2.1 84.5 99.5
JI-ML (linear SVM) 14.6 6.1 79.1 93.9
JIS-ML (linear SVM) 1.5 0.2 96.9 100.0
S-ML (rank SVM) 7.9 2.6 97.7 100.0
JI-ML (rank SVM) 11.3 4.4 91.3 99.8
JIS-ML (rank SVM) 3.5 0.6 99.8 100.0

(b-1) OU-LP-Bagβ (Test set)
Method EER AUC Rank-1 Rank-5
w/o ML 24.8 16.1 46.2 63.0
S-ML (linear SVM) 16.9 9.5 1.2 8.4
JI-ML (linear SVM) 12.1 4.9 54.8 70.6
JIS-ML (linear SVM) 8.0 2.3 32.4 63.1
S-ML (rank SVM) 13.3 6.0 45.5 69.1
JI-ML (rank SVM) 12.3 4.9 60.5 76.9
JIS-ML (rank SVM) 9.8 3.3 57.4 77.7

(b-2) OU-LP-Bagβ (Training set)
Method EER AUC Rank-1 Rank-5
w/o ML 23.9 16.0 48.3 64.5
S-ML (linear SVM) 14.0 7.4 1.7 9.3
JI-ML (linear SVM) 12.2 5.6 55.2 70.1
JIS-ML (linear SVM) 4.8 1.1 37.2 65.3
S-ML (rank SVM) 11.4 4.9 43.9 68.3
JI-ML (rank SVM) 12.4 5.2 60.6 75.9
JIS-ML (rank SVM) 8.5 2.6 58.3 80.3

regularization for the proximity to keep the generalization
capability.

As for the number of spatial bins (Fig.2(c)), we notice
that 44× 64 bins yielded the worst result for OUTD-B. This
shows that use of too much spatial bins induces generaliza-
tion errors for small number of training subjects, and hence
relatively coarse spatial bins (e.g., less than 22× 32 bins)
are recommended.

As for the number of intensity bins (Fig.2(d)), we can
see that too small number of intensity bins (e.g., 8 bins)
yielded the worst accuracies, while too much number of in-
tensity bins (e.g., 64 bins) does not improve the accuracies.
Therefore, moderate number of intensity bins such as 16 or
32 bins suffice based on the trade-off between the accuracy
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Figure 2.Sensitivity analysis of the hyper-parameters on EERs
with z-normalization.

and computational cost.

2. Implementation aspects

2.1. Fusion of multiple samples

When a probe and a gallery contain multiple samples
(e.g., multiple periods of gait features for gait recognition),
we can mitigate the effect of noisy observations (foreground
segmentation errors, gait fluctuations among periods, etc.)
by a statistical fusion scheme. For this purpose, we sim-
ply compute a dissimilarity for each combination of probe
and gallery samples based on Eq. (8) in the original paper,
and then take an average over the combinations as a fused
dissimilarity score.

2.2. Image registration

Before extracting a gait feature such as GEI, we register
a silhouette image sequence along with the horizontal axis
so as that a horizontal gravity center of a silhouette region
can coincide with the image center. Since the gravity cen-
ter may vary depending on clothing and carrying objects,
mis-alignment between a probe and a gallery may occur.
We therefore introduce the image registration procedure for
each matching pair as preprocess both for training and test
phases. More specifically, we decide amount of horizontal
shift of the probe so as to minimizel1-norm between the
gallery and the shifted probe.


