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Additional statistics of the MF2 set:
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Figure 1. Left: Photos per identity in the data set. Center: Age distribution. Right: Gender distribution.

For comparison and completeness, we show results of [2]] and [1]], which are the biggest benchmarks for face recognition
currently. Both allow any training data, while in this paper only the new proposed public MF2 was allowed to use for training.

100

-~ Beijing DeepSense Co. - DeepSense
-~ ShanghaiTech - ShanghaiTech
-- Google - FaceNet v8 80
-- NTechLAB - facenx_large
Beijing DeepSense Co. - DeepSense_Small
Vocord - deepVol
—— SIAT_MMLAB - SIAT_MMLAB
Beijing Faceall - Norm_1600
-~ Beijing Faceall - 1600
— NTechLAB - facenx_small

—— Barebones_FR - cnn 20 20
3DiVi Company - tdvmé \§

60

40

Identification Rate %
Identification Rate %

— Joint Bayes ]

o 0
— LBP 10* 102 10° 10° 10° 10° 10' 10° 10° 10* 10° 10°
—— Random Features #distractors (log scale) #distractors (log scale)

Figure 2. Megaface Challenge 1 (unrestricted training set) rank-1 identification rates under up to 1M distractions (varying by factors
of 10) using FaceScrub (left) and FG-Net (right) as probe images. Note that the results of MF2 challenge (with public training set) are
comparable to those results (any training data).
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Figure 3. Megaface Challenge 1 [2] (unrestricted training set) verification performance rates with 1M distractors using FaceScrub (left)
and FG-Net (right) as probe images. Note that the results of MF2 challenge (with public training set) are comparable to those results (any
training data).
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Figure 4. Results of [1] presented here for comparison and completeness. Left: easy set. Right: hard set. Note that the results of MF2
challenge (with public training set) are comparable to those results (any training data).
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