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1. Derivation of Joint Denoising and Deconvolution

1.1. Image Formation

In many imaging problems, such as low-light photography, microscopy, and also single-photon imaging, Poisson-distributed

shot noise dominates the image formation. Note that no engineering effort can mitigate this, because shot noise is an inherent

property of the particle nature of light. The image formation can be expressed as

h ∼ P (Aτ + d) , (1)

where P models a Poisson distribution. Here, we represent the temporal impulse response (i.e., the transient image), the

measured histogram, and the dark count as discrete column vectors τ ,h,d ∈ R
nxnynt×1. The matrix A ∈ R

nxnynt×nxnynt

encodes the convolution of the transient image with the laser pulse and SPAD jitter (g ∗ f) [t] as well as other scale factors.

Each transient image has a resolution of nx × ny pixels and each pixel has nt time bins.

The probability of having taken a measurement at one particular SPAD and histogram bin i is thus given as

p (hi|Aτ ) =
(Aτ + d)

hi

i e−(Aτ+d)
i

hi!
. (2)

Using the notational trick uv = elog(u)v , the joint probability of all measurements is expressed as

p (h|Aτ ) =

M∏

i=1

p (hi|Aτ ) =

M∏

i=1

elog((Aτ+d)
i)hi × e−(Aτ+d)

i × 1

hi!
, (3)

where M = nxnynt. Note that it is essential to model the joint probability for this image formation, because elements in τ

may affect any or all measurements due to the mixing matrix A. The log-likelihood of this expression is

log (L (τ )) = log (p (h|Aτ )) (4)

=
M∑

i=1

log (Aτ + d)i hi −
M∑

i=1

(Aτ + d)i −
M∑

i=1

log (hi!)

= log (Aτ + d)
T
h− (Aτ + d)

T
1−

M∑

i=1

log (hi!)

and its gradient is

∇log (L (τ )) = AT diag (Aτ + d)
−1

h−AT1 = AT

(
h

Aτ + d

)

−AT1. (5)

1.2. ADMMbased Reconstruction

As outlined in the primary text, the objective function for recovering transient images from blurry images that are corrupted

by Poissonian noise is a maximum a posteriori (MAP) problem:

minimize
{τ}

− log (p (h|Aτ )) + Γ (τ ) , (6)

subject to 0 ≤ τ



Without loss of generality, we replace the constrained objective by an unconstrained cost function

minimize
{τ}

−log (p (h|Aτ )) + IR+
(τ ) + Γ (τ ) (7)

Here, IR+
(·) is the indicator function that enforces the nonnegativity constraints

IR+
(x) =

{
0 x ∈ R+

+∞ x /∈ R+
(8)

where R+ is the closed nonempty convex set representing nonnegative real-valued numbers.

Next, we follow the general approach of the alternating direction method of multipliers (ADMM) [1] and split the un-

knowns while enforcing consensus in the constraints

minimize
{τ}

−log (p (h|z1))
︸ ︷︷ ︸

g1(z1)

+ IR+
(z2)

︸ ︷︷ ︸

g2(z2)

+Γ (z3)
︸ ︷︷ ︸

g3(z3)

subject to





A

I

I





︸ ︷︷ ︸

K

τ −





z1
z2
z3





︸ ︷︷ ︸

z

= 0 (9)

The Augmented Lagrangian of this objective is formulated as

Lρ (τ , z,y) =

3∑

i=1

gi (zi) + yT (Kτ − z) +
ρ

2
‖Kτ − z‖22 . (10)

An iterative solver can now be constructed that sequentially minimizes the Augmented Lagrangian w.r.t. each of the variables

τ and zi. For convenience, the scaled form of ADMM is used that uses the scaled dual variable u = (1/ρ)y instead of the

Lagrange multiplier y. This leads to the following iterative updates:

for k = 1 to maxiter

τ ← prox‖·‖
2
(v) = arg min

{τ}

Lρ (τ , z,y) = arg min
{τ}

1

2
‖Kτ − v‖22 , v = z− u (11)

z1 ← proxP,ρ (v) = arg min
{z1}

Lρ (τ , z,y) = arg min
{z1}

g1 (z1) +
ρ

2
‖v − z1‖22 , v = Aτ + u1 (12)

z2 ← proxI,ρ (v) = arg min
{z2}

Lρ (τ , z,y) = arg min
{z2}

g2 (z2) +
ρ

2
‖v − z2‖22 , v = τ + u2 (13)

z3 ← proxΓ,ρ (v) = arg min
{z3}

Lρ (τ , z,y) = arg min
{z3}

g3 (z3) +
ρ

2
‖v − z3‖22 , v = τ + u3 (14)





u1

u2

u3





︸ ︷︷ ︸

u

← u+Kτ − z

end for



1.2.1 Proximal Operator for Quadratic Term (Eq. (11))

For the proximal operator of the quadratic subproblem, we formulation the closed-form solution via the normal equations:

prox‖·‖
2
(v) = arg min

{τ}

1

2
‖





A

I

I





︸ ︷︷ ︸

K

τ −





v1

v2

v3





︸ ︷︷ ︸

v

‖22 =
(
KTK

)−1
KTv

=
(
ATA+ 2I

)−1 (
ATv1 + v2 + v3

)
(15)

= F−1
t

(Ft {c}∗ · Ft {v1}+ Ft {v2}+ Ft {v3}
Ft {c}∗ · Ft {c}+ 2

)

(16)

where Ft is the 1D Fourier transform along the temporal dimension of a 3D datacube, the operators · and ·
· are element-wise

multiplication and division, c ∈ R
nx×ny×nt is a per-SPAD temporal convolution kernel combining laser pulse shape and

SPAD jitter, which can be different for each SPAD. Note that this proximal operator is basically an inverse filter and does

not require explicit matrix-vector products to be computed. The structure of this specific problem allows for a closed-form

solution to be expressed using a few Fourier transforms as well as element-wise multiplications and divisions. Typically,

Ft {c}∗ and the denominator can be precomputed and do not have to be updated throughout the ADMM iterations.

The difference between Equations (15) and (16) is that the former uses vectorized discrete variables whereas the latter uses

the non-vectorized version of the same quantities. So τ ,v1/2/3 ∈ R
nxnynt×1 and τ, v1/2/3, c ∈ R

nx×ny×nt . The reason for

this change in notation is that we can express the matrix vector multiplication Aτ , which represents a temporal convolution

for each SPAD, via the convolution theorem, as a multiplication in the frequency domain, i.e.

Aτ = vec (c ∗t τ) = vec
(
F−1

t {Ft {c} · Ft {τ}}
)
, (17)

where ∗t is a 1D convolution along the time dimension of a 3D datacube and the operator vec (·) vectorizes a 3D datacube

into a single column vector.

1.2.2 Proximal Operator for Poisson Term (Eq. (12))

Recall, this proximal operator is defined as

proxP,ρ (v) = arg min
{z1}

J (z1) = arg min
{z1}

−log (p (h|z1)) +
ρ

2
‖v − z1‖22 (18)

Using Equation (5), we write the objective function J (z1) for this subproblem as

J (z1) = −log (z1 + d)
T
h+ (z1 + d)

T
1+

ρ

2
(z1 − v)

T
(z1 − v) . (19)

Next, we equate the gradient of the objective to zero

∇J (z1) = −diag (z1 + d)
−1

h+ 1+ ρ (z1 − v) = 0. (20)

This proximal operator removes the need for including the system matrix A, which makes the noisy observations independent

of each other, so we do not need to account for the joint probability of all measurements. This can be seen by looking at the

gradient of J w.r.t. individual elements in z1:

∂J

∂z1j
= − hj

z1j + dj
+ 1 + ρ

(
z1j − vj

)
(21)

= z21j +
1 + ρdj − ρvj

ρ
z1j −

hj + ρdjvj

ρ
= 0 (22)

This expression is a classical root-finding problem of a quadratic, which can be solved independently for each z1j . The

quadratic has two roots, but due to the nonnegativity constraints in our objective function we are only interested in the

positive one. Thus, we can define the proximal operator as

proxP,ρ (v) = −
1 + ρd− ρv

2ρ
+

√
(
1 + ρd− ρv

2ρ

)2

+
h+ ρdv

ρ
. (23)



This operator is independently applied to each pixel and can therefore be implemented analytically without any iterations.

Note that we still need to chose a parameter ρ for the ADMM updates. Heuristically, small values (e.g. 1e−5) work best for

large signals with little noise, but as the Poisson noise starts to dominate the image formation, ρ should be higher.

For more details on this proximal operator, please refer to the paper by Dupe et al. [5].

1.2.3 Proximal Operator for Indicator Function (Eq. (13))

The proximal operator for the indicator function representing the constraints is rather straightforward

proxI,ρ (v) = arg min
{z2}

IR+
(z2) +

ρ

2
‖v − z2‖22 = arg min

{z2∈R+}

‖z2 − v‖22 = ΠR+
(v) , (24)

where ΠR+
(·) is the element-wise projection operator onto the convex set R+

ΠR+
(vj) =

{
0 vj < 0
vj vj ≥ 0

(25)

For more details on this and other proximal operators, please refer to [1, 8].

1.2.4 Proximal Operator for Regularization Term Γ (Eq. (14))

The objective function of Equation (14) is

proxΓ,ρ (v) = arg min
{z3}

Γ (z3) +
ρ

2
‖v − z3‖22 (26)

Total Variation Prior Total variation (TV) is one of the most widely used priors in image reconstruction. An isotropic

transverse TV prior was also recently proposed for denoising range data captured with SPADs [9]. Solving Equation (26) for

Γ (z3) = ‖z3‖TV can be implemented via a soft-thresholding operator. Please see Boyd et al. [1] for more details.

Self-similarity Prior Self-similarity priors are commonly used in state-of-the-art denoising approaches, such as non-local

means [2] and block-matching and 3D filtering (BM3D) [4]. Similar to standard videos, our data is three-dimensional so we

chose video BM3D (VBM3D) [3] as the self-similarity prior of choice.

Following previous work on image optimization (e.g., [7]), we note the similarity between Equation (26) and a general

maximum a posteriori (MAP) formulation that occurs for any image denoising problem with Gaussian noise:

minimize
{x}

1

2σ2
‖y − x‖22 + Γ (x) , (27)

with y being the noisy measurements and x the unknown, noise-free image. This similarity allows us to use any algorithm

for denoising Gaussian images as a proximal operator for the regularization term. VBM3D, for example, uses a patch-based

self-similary prior for Γ, which we can directly exploit as

proxΓ,ρ (v) = vec
(

VBM3D√
1/ρ

(v)
)

. (28)

We simply use existing, optimized implementations of VBM3D for this proximal operator by setting the standard deviation

parameter of the Gaussian denoiser to σ =
√

1/ρ and letting it denoise the temporary variable v ∈ R
nx×ny×nt which is the

un-vectorized form of v.

2. Extended Results & Comparisons

Simulations Figure 1 provides a comparison of our reconstruction procedures for additional frames and RGB data.

Experiments Figures 2 through 8 show the Poisson-TV (2D), Poisson-TV (3D) and Poisson-VBM3D reconstruction results

for all scenes.
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Figure 1. Denoising & deblurring results from a simulated transient image.
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Figure 2. Fruit scene. Column 1: Images of the scene under laser illumination, i.e., the result of integrating the transient image over the

temporal dimension. Column 2-4: Frames from a transient image appearing in chronological order.
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Figure 3. Resolution chart scene.
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Figure 4. Optical fiber scene.
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Figure 5. Soda bottle scene.
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Figure 6. CVPR logo scene.
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Figure 7. Foam box scene.
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Figure 8. Statue scene.


