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In the supplementary material we present more details on
one of the baseline methods (BA-pKF), which was omitted
from the main paper due to the limit on page length. We
also report two additional experiments in the supplemen-
tary material. In the first experiment, we report a sensitivity
analysis regarding parameter settings in our proposed BA-
pDM method and discuss how this affects the accuracy of
the estimated control inputs. In the second experiment, we
compare our BA procedure with a baseline where the data
association problem was solved before running bundle ad-
justment by forcing the single-view tracker to output at most
one 2D observation in every video frame. Finally, qualita-
tive results on the LAB and FARM datasets are shown in the
supplementary video.

1. Kalman filter prior
In Section 5 of the main paper, we described several

baselines that we have compared our approach to. Here we
provide more details on the method based on the Kalman
filter, as the other ones are relatively straightforward to im-
plement.

Classical Kalman filter allows predicting the state of the
quadrotor at time t + 1 from its state at time t. In our
case this state contains drone’s position and velocity. We
then track quadrotor in 3D using the constant acceleration
Kalman filter model. Therefore, x̂t+1 from Eq. 4 of the
main paper is computed according to the prediction of the
Kalman filter. However, as the experiments show, the prior
is dependent on the quality of the initialization and BA-pKF
is not robust to noise in the initial 3D trajectory.

2. Control inputs prediction analysis
In Section 5.1 of the main paper we have shown that

our system is capable of inferring the internal state of the
quadrotor, which can be further used to estimate the con-
trol inputs commanded to the drone by the operator. Fig.
3 of the main paper shows that our approach tends to
over smooth the internal parameters (Φ,Θ,U). There-

method Position error (m)

BA-pDM-single 1.998
BA-pDM 1.636

Table 1: Comparison between our method (BA-pDM) and a
baseline (BA-pDM-single) on the FARM dataset. The base-
line uses at most one detection in every frame in all the input
videos.

fore, in this section we investigated the effect of fine-tuning
the dynamics-based prior on the accuracy of the estimated
(Φ,Θ,U).

Fig. 1 illustrates the influence of the dynamic-based prior
on internal quadrotor state. Here the weight λ from the Eq.
3 of the main paper together with the smoothing coefficient
σ of the gaussian kernel H(Γ) = (g ∗ Γ) from Eq. 11 in-
creases from top most plot to the bottom one. We can see
in Fig. 1(a) that if the weight of the prior is small (0.01),
we can quite reliably recover the sharp peaks of the throt-
tle (U) command, however, there is some residual noise for
time periods when the true throttle command remains fixed
at a constant value. This happens because the prior does
not have enough influence on the optimization to make it
robust to the measurement noise in the image. On the other
hand increasing the weight of the prior to (0.03) (Fig. 1(c))
allows us to compensate for the initialization noise and re-
cover a smoother estimation of U. However, this tends to
oversmooth U especially when it changes abruptly corre-
sponding to times when the drone suddenly changes direc-
tion or altitude.

3. Advantage of the new cost function
Recall that in Eq. 2 in the main paper, we introduced

a cost function based on a more general form of reprojec-
tion error that did not rely on perfect correspondence be-
tween different views. We did this to handle multiple candi-
date detections in every frame produced by the single-view
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(a) λ = 0.01, σ = 0.8

(b) λ = 0.02, σ = 1.1

(c) λ = 0.03, σ = 1.4

Figure 1: Influence of the dynamics-based prior on the prediction of the internal state of the quadrotor. In different plots
we have varied the weight of the prior λ and the smoothing factor σ of the gaussian kernel that smooths (Φ,Θ,U). (a)
corresponds to (λ, σ) = (0.01, 0.8), (b) illustrates the case when (λ, σ) = (0.02, 1.1) and (c) depicts the experiment with
(λ, σ) = (0.03, 1.4).



tracker running on the input videos. To quantify the benefit
of this new cost function, we compared our method (BA-
pDM) which uses this new cost function E(C,X,O) with
another baseline which we refer to as (BA-pDM-single).
This baseline uses at most one measurement (detection)
in every video frame. In that case, E(C,X,O) becomes
identical to the cost function EBA(C,X,O) (see Eq. 1
in the main paper) used in conventional bundle adjustment.
These unique detections used in the baseline, were selected
during the 3D trajectory initialization step, which uses the
RANSAC-based multi-view triangulation method we have
proposed.

Table 1 reports the final average position error for 3D
points sampled on the trajectories estimated by our method
(BA-pDM) and by the baseline (BA-pDM-single) respec-
tively. These correspond to the FARM dataset. Note that
both methods use the same dynamics-based prior but BA-
pDM produces a more accurate result because the new
cost function allows the selection of the 2D measurements
(amongst the multiple detection candidates) to be refined
during the bundle adjustment procedure.


