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Appendix I. Additional Results
Our main results in the paper demonstrate successful in-

ference of high-fidelity texture maps from unconstrained
images. The input images have mostly low resolutions, non-
frontal faces, and the subjects are often captured in chal-
lenging lighting conditions. We provide additional results
with pictures from the annotated faces-in-the-wild (AFW)
dataset [10] to further demonstrate how photorealistic pore-
level details can be synthesized using our deep learning ap-
proach. We visualize in Figure 9 the input, the intermedi-
ate low-frequency albedo map obtained using a linear PCA
model, and the synthesized high-frequency albedo texture
map. We also show several views of the final renderings us-
ing the Arnold renderer [13]. We refer to the accompanying
video for additional rotating views of the resulting textured
3D face models.
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Figure 1: Comparison between different convolutional neu-
ral network architectures.

Evaluation. As Figure 1 indicates, other deep convolu-
tional neural networks can be used to extract mid-layer fea-
ture correlations to characterize multi-scale details, but it
seems that deeper architectures produce fewer artifacts and
higher quality textures. All three convolutional neural net-
works are pre-trained for classification tasks using images
from the ImageNet object recognition dataset [4]. The re-
sults of the 8 layer CaffeNet [2] show noticeable blocky ar-
tifacts in the synthesized textures and the ones from the 16
layer VGG [12] are slightly noisy around boundaries, while
the 19 layer VGG network performs the best.
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Figure 2: Even for largely downsized image resolutions, our
algorithm can produce fine-scale details while preserving
the person’s similarity.

We also evaluate the robustness of our inference frame-
work for downsized image resolutions in Figure 2. We crop
a diffuse lit face from a Light Stage capture [5]. The re-
sulting image has 435× 652 pixels and we decrease its res-
olution to 108 × 162 pixels. In addition to complex skin
pigmentations, even the tiny mole on the lower left cheek is
properly reconstructed from the reduced input image using
our synthesis approach.

Comparison. We provide in Figure 3 additional visual-
izations of our method when using the closest feature corre-
lation, unconstrained linear combinations, and convex com-
binations. We also compare against a PCA-based model
fitting [3] approach and the state-of-the-art visio-lization
framework [9]. We notice that only our proposed tech-
nique using convex combinations is effective in generating
mesoscopic-scale texture details. Both visio-lization and
the PCA-based model result in lower frequency textures and
less similar faces than the ground truth. Since our inference
also fills holes, we compare our synthesis technique with
a general inpainting solution for predicting unseen face re-
gions. We test with the widely used PatchMatch [1] tech-
nique as illustrated in Figure 4. Unsurprisingly, we observe
unwanted repeating structures and semantically wrong fill-
ings since this method is based on low-level vision cues.
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Figure 3: Comparison between PCA-based model fit-
ting [3], visio-lization [9], our method using the closest
feature correlation, our method using unconstrained linear
combinations, and our method using convex combinations.
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Figure 4: Comparison with PatchMatch [1] on a partial in-
put data.

Appendix II. User Study Details
This section gives further details and discussions about

the two user studies presented in the paper. Figures 5 and 7
also show the user interfaces that we deployed on Amazon
Mechanical Turk (AMT).

So the answer is NO-NO-YES.

   

 Yes/Real  No/Fake  Yes/Real  No/Fake  Yes/Real  No/Fake

Figure 5: AMT user interface for user study A.

User Study A: Photorealism and Alikeness. We recall
that method (1) is obtained using PCA model fitting, (2)
is visio-lization, (3) is our method using the closest feature
correlation, (4) our method using unconstrained linear com-
binations, and (5) our method using convex combinations.
We randomly select 11 photographs from the Chicago Face
Database [8] for this evaluation, and downsize/crop their
resolution from 2444 × 1718 to 512 × 512 pixels. At the
end we apply one iteration of Gaussian filtering of kernel
size 5 to remove all the facial details. We show the turkers
a left and right side of a face and inform them that the left
side is always the ground truth. The right side has a 50%
chance of being computer generated. The task consists of
deciding whether the right side is “real” and identical to the
ground truth, or “fake”. We summarize our analysis with
the box plot in Figure 6 using 150 turkers. Only 65.6% of
the real images on the right have been correctly marked as
“real”. This is likely due to the fact that the turkers know
that only 50% are real, which affects their confidence in dis-
tinguishing real ones from digital reconstructions. Results
based on PCA model fittings have few occurrences of false
positives, which indicates that turkers can reliably identify
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Figure 6: Box plots of 150 turkers rating whether the image
looks realistic and identical to the ground truth. Each plot
contains the positive rates for 11 subjects in the Chicago
Face Database.

Every score from 1-3 must exist and only exist once. If you think two of them are at the same level, choose whatever order

Fake [  1  2  3 ] Real Fake [  1  2  3 ] Real Fake [  1  2  3 ] Real

Figure 7: AMT user interface for user study B.

them. The generated faces using visio-lization also appear
to be less realistic and similar than those obtained using
variations of our method. For the variants of our method,
(3), (4), and (5), we measure similar means and medians,
which indicates that non-technical turkers have a hard time
distinguishing between them. However, method (4) has a
higher chance than variant (3) to be marked as “real”, and
the convex combination method (5) achieves the best results
as they occasionally notice artifacts in (4). Notice how the
left and right sides of the face are swapped in the AMT in-
terface to prevent users from comparing texture transitions.

User Study B: Our method vs. Light Stage Capture.
We used three subjects (due to limited availability) and ran-
domly perturbed their head rotations to produce more ren-
dering samples. To obtain a consistent geometry for the
Light Stage data, we warped our mesh to fit their raw scans
using non-rigid registration [6]. All examples are rendered
using full-on diffuse lighting and our input image to the in-
ference framework has a resolution of 435×652 pixels. We
asked 100 turkers to sort 3 sets of renderings, one for each
of the three subjects. Surprisingly, we found that 56% think
that ours are superior in terms of realism than those obtained
from the Light Stage, 74% of the turkers found the results

of (2) to be more realistic than (3), and 72% think that ours
is superior to (3). We believe that over 20% of the turkers
who believe that (3) is better than the two other methods are
outliers. After removing these outliers, we still have 57%
who believe that our results are more photoreal than those
from the Light Stage. We believe that our synthetically gen-
erated fine-scale details confuse the turkers for subjects that
have smoother skins in reality.

Appendix III. Frequently Asked Questions

input image [Thies et al. 2016] with visibility
constraints

with visibility
constraints (uv map)
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(uv map)

Figure 8: The effect of using visibility constraints when es-
timating the PCA-based albedo map.

Q: What is the role of the visibility term in Section 3?
A: Our PCA-based model fitting does share similarities

with [14], but we introduce an important visibility term Ec

based on the visibility of pixels p ∈ M, which is obtained
using the two-stream segmentation network introduced
in [11]. Without this term, it is not possible to recover
facial appearances reliably in the presence of occlusions
(due to hairstyles, hands, etc.), as shown in Fig. 8.

Q: Why does it make sense to represent local struc-
tures as Gramian matrices rather than as filter responses
directly?

A: Multi-scale features including local structures are
intrinsically represented by distributions of activations in
a CNN. A theoretical proof that shows that synthesizing
images using Gramian matrices is equivalent to minimizing
the difference of feature distributions (Maximum Mean
Discrepancy with second order polynomial kernels) be-
tween two images has been recently presented by Li et
al [7]. Reconstructing filter responses F directly is not
possible since they contain spatial information and linearly
combining them would yield non-facial features.

Q: Why doesn’t it make sense to train the network exclu-
sively on a face dataset?

A: Negative (i.e., non-facial) samples are necessary for
the network to discern between facial and non-facial fea-
tures. In fact, a significant amount of non-facial images is
needed in order to ensure that Gramian matrices of faces
are embedded in a sufficiently low-rank manifold in feature
space. If we only train the classification network with faces,
the blending of multiple subjects will yield non-facial fea-
tures. We have conducted extensive experiments and the
use of face-only classification networks significantly under-
perform the use of a general one, such as VGG-19.
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Figure 9: Additional results with images from the annotated faces-in-the-wild (AFW) dataset [10].
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