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1. Analysis of Switch-CNN
1.1. Effect of Coupled Training

Differential training on the CNN regressors R; through
R3 generates a multichotomy that minimizes the predicted
count by choosing the best regressor for a given crowd scene
patch. However, the trained switch is not ideal and the man-
ifold separating the space of patches is complex to learn (see
Section 5.2 of the main paper). To mitigate the effect of
switch inaccuracy and inherent complexity of task, we per-
form coupled training of switch and CNN regressors. We
ablate the effect of coupled training by training the switch
classifier in a stand-alone fashion. For training the switch
in a stand-alone fashion, the labels from differential train-
ing are held fixed throughout the switch classifier training.

The results of the ablation are reported in Table 1. We see
that training the switch classifier in a stand-alone fashion re-
sults in a deterioration of Switch-CNN crowd counting per-
formance. While Switch-CNN with the switch trained in
a stand-alone manner performs better than MCNN, it per-
forms significantly worse than Switch-CNN with coupled
training. This is reflected in the 13 point higher count MAE.
Coupled training allows the patch labels to change in order
to adapt to the ability of the switch classifier to relay a patch
to the optimal regressor I?, correctly. This co-adaption is
absent when training switch alone leading to deterioration
of crowd counting performance.

\ Method | MAE |

MCNN [5] 110.2
Switch-CNN without Coupled Training | 103.26
Switch-CNN with Coupled Training | 90.41
Table 1. Comparison of MAE for Switch-CNN trained with
and without Coupled Training on Part A of the ShanghaiTech
dataset [5].

*Equal contribution

1.2. Ablations on UCF_CC_50 dataset

We perform ablations referenced in Section 5.1 and 5.3
of the main paper on the UCF_CC_50 dataset [3]. The re-
sults of these ablations are tabulated in Table 2. The results
follow the trend on ShanghaiTech dataset and reinforce the
superiority of Switch-CNN (See Section 5.1 and 5.3 of the
main paper for more details).

\ Method | MAE |
Cluster by count 319.16
Cluster by mean inter-head distance | 358.78
Switch-CNN(R1,R3) 369.58
Switch-CNN(R1,R>2) 362.22
Switch-CNN(R3,R2) 334.66
Switch-CNN 318.07

Table 2. Additional results for ablations referenced in Section 5.1
and 5.3 of the main paper for UCF_CC_50 dataset[3].

1.3. Choice of Switch Classifier

The switch classifier is used to infer the multichotomy
of crowd patches learnt from differential training. The ac-
curacy of the predicted count in Switch-CNN is critically
dependent on the choice of the switch classifier. We repur-
pose different classifier architectures, from shallow CNN
classifiers to state-of-the art object classifiers to choose the
best classifier that strikes a balance between classification
accuracy and computational complexity.

Figure 1 shows the different architectures of switch clas-
sifier that we evaluate. CNN-small is a shallow classi-
fier derived from VGG-16 [4]. We retain the first three
convolutional layers from VGG-16 and add a 512 dimen-
sional fully-connected layer along with a 3-way classifier.
The convolutional layers in CNN-small are initialized from
VGG-16. We also repurpose VGG-16 and VGG-19 [4] by
global average pooling the Conv 5 features and using a 512
dimensional fully-connected layer along with a 3-way clas-
sifier. All the convolutional layers in VGG-16 and VGG-19
are initialized from VGG models trained on Imagenet [1].



2C 3x3 | 64 2C 3x3 | 64 2C 3x3 | 64
M-P 2x2 M-P 2x2 M-P 2x2
2C 3x3 | 128 2C 3x3 | 128 2C 3x3 | 128
M-P 2x2 M-P 2x2 M-P 2x2
3C 3x3 | 256 3C 3x3 | 256 4C 3x3 | 256
G-A-P M-P 2x2 M-P 2x2
FC | 512 3C 3x3 | 512 4C 3x3 | 512
FC | 3 M-P 2x2 M-P 2x2
Softmax 3C 3x3 | 512 4C 3x3 | 512
G-A-P G-A-P
FC | 512 FC | 512
FC | 3 FC | 3
Softmax Softmax
CNN-small VGG-16 VGG-19
C : Convolution
M-P : Max-Pool
G-A-P: Global Average
Pool

: Fully Connected

ResNet-50 ResNet-101

Figure 1. The architecture of different switch classifiers evaluated in Switch-CNN.

C] Convolution C] Fully Connected . Residual
C] MaxPool C] BatchNorm C] ReLU
C] AvgPool C] SoftMax
‘ Method ‘ Acc ‘
CNN-small | 64.39
VGG-16 73.75
VGG-19 74.3
ResNet-50 | 75.03
ResNet-101 | 74.95

Table 3. Comparison of classification accuracy for different switch
architectures on Part A of the ShanghaiTech dataset [5]. The final
switch-classifier selected for all Switch-CNN experiments is high-
lighted in red.

The state-of-the-art object recognition classifiers, Resnet-
50 and Resnet-101 [2] are also evaluated. We replace the
final 1000-way classifier layer with a 3-way classifier. For
ResNet training, we do not update the Batch Normalization

(BN) layers. The BN statistics from ResNet model trained
for ILSCVRC challenge [ 1] are retained during fine-tuning
for crowd-counting. The BN layers behave as a linear ac-
tivation function with constant scaling and offset. We do
not update the BN layers as we use a batch size of 1 during
SGD and the BN parameter update becomes noisy.

We train each of the classifier on image patch-label pairs,
with labels generated from the differential training stage
(see Section 3.3 of the main paper). The classifiers are
trained using SGD in a stand-alone manner similar to Sec-
tion 1.1. Table 3 shows the performance of the different
switch classifiers on Part A of the ShanghaiTech dataset [5].
CNN-small shows a 10% drop in classification accuracy
over the other classifiers as it is unable to model the com-



plex multichotomy inferred from differential training. We
observe that the performance plateaus for the other classi-
fiers despite using more powerful classifiers like ResNet.
This can be attributed to complexity of manifold inferred
from differential training. Hence, we choose the repur-
posed VGG-16 model for all our Switch-CNN experiments
as it gives classification accuracy competitive with deeper
models like ResNet, but with a lower computational cost.
A lower computational cost is critical as it allows faster
training during coupled training of the switch-classifier and
CNN regressors Rj_3.
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