Generalized Deep Image to Image Regression

Supplementary Material for CVPR17 submission # 2384

Venkataraman Santhanam, Vlad I. Morariu, Larry S. Davis
UMIACS
University of Maryland, College Park
[venkai,morariu,lsd]@umiacs.umd.edu

April 10, 2017

<table>
<thead>
<tr>
<th></th>
<th>DnCNN [1]</th>
<th>B_0 ONLY</th>
<th>1-BR</th>
<th>2-BR</th>
<th>3-BR</th>
<th>4-BR</th>
</tr>
</thead>
<tbody>
<tr>
<td># of params</td>
<td>739584</td>
<td>343424</td>
<td>491264</td>
<td>639104</td>
<td>786944</td>
<td>934784</td>
</tr>
<tr>
<td>Memory (GB)</td>
<td>19.75</td>
<td>5.12</td>
<td>6.20</td>
<td>6.58</td>
<td>6.78</td>
<td>6.93</td>
</tr>
</tbody>
</table>

Table 1: Training with batch size: 128, input size: 128x128

Figure 1: Denoising at $\sigma = 55$ for 12 commonly used test images, outside our training bounds ($\sigma \in [8, 50]$) for the 3-branch RBDN and DnCNN [1]. Red, Yellow, Green boxes show the PSNR.
Figure 2: Denoising at $\sigma = 55$ for test images from BSD300 [2], outside our training bounds ($\sigma \in [8, 50]$) for the 3-branch RBDN and DnCNN [1]. Red, Yellow, Green boxes show the PSNR.
Figure 3: Relighting results on images from the Janus CS0 [3] dataset. The goal is to render faces from various unknown lighting conditions to a fixed lighting condition. Odd rows: Inputs, Even Rows: 3-branch RBDN output. Note that the model is trained exclusively on frontal face images with constrained illumination variations from the CMU-MultiPie [4] dataset, but still generalizes reasonably well to unconstrained face images under a variety of poses, illuminations, expressions, occlusions, affordances (hats, glasses, etc.)
Figure 4: Colorizing legacy black-and-white photos: comparing 4-branch RBDN-Lab with the Colorful Colorization model of R.Zhang et al [5]
Figure 5: Colorizing legacy black-and-white photos: comparing 4-branch RBDN-Lab with the Colorful Colorization model of R.Zhang et al [5]
References

