
Deep Network Flow for Multi-Object Tracking: Supplemental Material

Samuel Schulter Paul Vernaza Wongun Choi Manmohan Chandraker
NEC Laboratories America, Inc.

Cupertino, CA, USA

The supplemental material of our deep network flow approach for multi-object tracking contains the following items:

• Details on the formulation of deep network flows (Section 1)

• An on-line version of the tracker (Section 2)

• Qualitative results (Section 3)

1. Details on the formulation of deep network flows
First, we want to provide further details of our formulation of deep network flows and for computing gradients of the

linear programming solution w.r.t. the cost functions.

1.1. The nullspace of C is larger than the trivial solution 0

In Section 3.2.1 of the main paper, we smooth the lower level problem, i.e., the linear program. We get rid of the box
constraints with log-barriers and remove the flow conservation constraints (matrix C) with a change of basis, which requires
the null space of C. The matrix C ∈ R2K×M models the flow conservation constraints

xin
i +

∑
j

xlink
ji = xdet

i

xout
i +

∑
j

xlink
ij = xdet

i

(1)

for each detection i = 1, . . . ,K. The dimensionality of the linear program is M = 3K + |E|, where E is the set of all edges
between detections, i.e., xlink. The right singular vectors of C with corresponding 0 singular values define the null space of
C. The null space contains only the trivial solution 0, iff all columns of C are linearly independent. However, since the rank
of C is at most 2K, we have at least K + |E| singular vectors with a singular value of 0.

1.2. The bi-level formulation for computing gradients of the loss function w.r.t. the network flow costs

In Section 3.2.2 of the main paper, we directly use implicit differentiation on the optimality condition of the lower level
problem to compute the gradients of the loss function L w.r.t. the costs c of the network flow problem, i.e., ∂L

∂c . For a more
detailed derivation, we again define the bi-level problem from the main paper as

L
(
x(z∗(c)),xgt) s.t. z∗(c) = arg min

z
E(z, c) (2)

with
E(z, c) = t · c>x(z) + P (x(z)) (3)

and

P (x(z)) = −
2M∑
i=1

log(bi − a>i x(z)) . (4)

For an uncluttered notation, we omit the dependency of c on Θ, which are the actual parameters of the cost functions to be
learned. Note that computing ∂c

∂Θ is essentially back-propagation of a neural network, which we use as cost functions, and

∂L
∂Θ is computed easily via the chain rule as ∂L

∂Θ = ∂c
∂Θ ·

∂L
∂c Using the optimality condition of the lower level problem (3) and

Lagrange multipliers λ, we bring problem (2) into its unconstrained form

LG(z, c, λ) = L
(
x(z∗(c)),xgt)+ λ> · ∂E(z, c)

∂z
(5)

with new optimality conditions

∂LG(z, c, λ)

∂z
= 0 =

∂L
∂z

+
∂2E(z, c)

∂z2
· λ (6)

∂LG(z, c, λ)

∂c
= 0 =

∂2E(z, c)

∂c∂z
· λ (7)

∂LG(z, c, λ)

∂λ
= 0 =

∂E(z, c)

∂z
(8)

The last optimality condition (8) is fulfilled by solving the linear program (LP), i.e., the network flow. By using the first
condition (6) we can compute the Lagrange multipliers as

λ = −
[
∂2E(z, c)

∂z2

]−1
· ∂L
∂z

= −H−1E ·
∂L
∂z

, (9)

where HE is the Hessian of the lower level problem (3). Finally, we can define the gradients of the original problem w.r.t.
the costs c as

∂LG(z, c, λ)

∂c
= −∂

2E(z, c)

∂c∂z
·H−1E ·

∂L
∂z

, (10)

which is equivalent to the generic bi-level solution given in [3].
Finally, we define each of the three terms in (10) in more detail. Based on this first derivative of the lower level problem

∂E(z, c)

∂z
= t · ∂x(z)

∂z
· c +

∂x(z)

∂z

∂P (x(z))

∂x(z)

= t ·B> · c + B>
∂P (x(z))

∂x(z)

= B>
[
t · c +

∂P (x(z))

∂x(z)

]
,

(11)

we can define
∂2E(z, c)

∂c∂z
=

[
∂

∂c
t · c +

∂

∂c

∂P (x(z))

∂x(z)

]
B

= [t · I + 0] B

= t ·B ,

(12)

∂2E(z, c)

∂z2
=

[
∂

∂z
t · c +

∂

∂z

∂P (x(z))

∂x(z)

]
B

=

[
0 +

∂x(z)

∂z

∂2P (x(z))

∂x(z)2

]
B

= B>
∂2P (x(z))

∂x(z)2
B

(13)

and
∂L
∂z

=
∂x(z)

∂z
· ∂L
x(z)

= B> · ∂L
x(z)

, (14)

where I is the identity matrix. This gives the same solution as in the main paper, i.e.,

∂L
∂c

= −t ·B
[
B>

∂2P (x(z))

∂x(z)2
B

]−1
B> · ∂L

x(z)
= −t ·BH−1E B> · ∂L

x(z)
. (15)

In the next section, we show that the Hessian HE is always invertible.

t

Incoming frame

Output frame

(a)

t

Incoming frame

Output frame

(b)

Figure 1: Illustration of (a) the off-line (or near on-line [1]) and (b) the on-line tracking model. For both figures, each node
represents one detection at a time step t. Note that, for clarity we only use a single node to represent a detection instead of the
actual two nodes (c.f ., Figure 1 in the main paper). In each figure the dark gray big rectangle represents the current temporal
window (with a length of W = 5) we are solving the network flow problem for. The dashed version illustrates the previous
temporal window. This also shows that we move the temporal window by one frame, i.e., ∆ = 1. The green, blue and red
curves show the three trajectories of the current solution. Again, the dashed curves illustrate (parts of) the trajectories from
the previous solution. In the off-line version (a), the green transparent box marks the current incoming frame and the red
transparent box marks that frame that is used to produce the output. For the on-line version (b), these two boxes overlap. The
solution of the incoming frame is used as the output. The off-line (or near on-line [1]) version is typically more stable as it
can look into both future and past frames.

1.3. The Hessian of the lower level problem is always invertible

The Hessian of the lower level problem (3) (again, with dependencies of functions omitted for an uncluttered notation) is
given as

HE =
∂2E

∂z2
= B> · ∂

2P

∂x2
·B = B>

[
2M∑
i=1

1(
bi − a>i x

)2 · aia
>
i

]
B , (16)

where a>i are the rows of A = [I,−I]
> (with I the identity matrix) and bi are the values of the vector b = [1,0]

>.
Defining ei as the unit vector with value 1 at dimension i and 0 elsewhere, we can see that ai = ei for i ≤M , ai = −ei−M

for i > M , bi = 1 for i ≤M and bi = 0 for i > M . Since aia
>
i = eie

>
i = −ei · −e>i , we can write

2M∑
i=1

1(
bi − a>i x

)2 · aia
>
i =

M∑
i=1

(
1− e>i x

)−2 · eie
>
i +

(
0 + e>i x

)−2 · eie
>
i

=

M∑
i=1

(
(1− xi)−2 + x−2i

)
· eie

>
i

= diag
[
(1− xi)−2 + x−2i

]
= D ,

(17)

where xi is the value of x at dimension i and diag [·] creates a diagonal matrix. Since we have xi ∈ (0, 1) because of the log
barriers, all values of D are positive and finite and we can write the Hessian as

B>DB = B>D
1
2 ·D 1

2 B = B̂>B̂ . (18)

The rank of D
1
2 ∈ RM×M is M and the rank of B ∈ RM×L is L = K + |E|. Via matrix rank properties (e.g., Sylvester’s

rank inequality), B̂ and also its Gram matrix have rank L, which means the Hessian ∂2E
∂z2 ∈ RL×L has full rank.

2. On-line tracking
As noted in Section 3.4 of the main paper, our tracking model can process a video sequence on-line, i.e., without taking

future frames into account. Figure 1 illustrates this causal system. We did one experiment on the KITTI-Tracking data set [2]

MOTA REC PREC MT IDS FRAG

MLP 2 74.19 84.07 92.85 59.96 70 376
MLP 2 (online) 72.34 81.37 93.68 49.74 69 351

Table 1: Off-line (or near on-line [1]) versus on-line processing results on a cross-validation on KITTI-Tracking [2].

to compare the on-line version with our off-line (or near on-line [1]) version. Based on the same experimental setup as in
Section 4.1 of the main paper, we compare the off-line and on-line version of the MLP 2 model. Table 1 demonstrates that
the on-line version of our tracking model only shows a moderate drop in performance and mainly affects the recall (REC and
MT). However, the on-line version enables many applications that require strict on-line processing of streaming data, e.g.,
autonomous driving.

3. Qualitative results
In this section, we present some qualitative results, which compare two different models in each example. In each of the

figures, we show the output of two models side-by-side for different frames, i.e., the first frame is in the first row and the
last frame is in the last row for each model. The green dotted bounding boxes represent the ground truth. Solid boxes are
the detections, where detections from the same trajectory have the same color and the same number (object ID) on top of the
corresponding bound box. The background color of the object ID indicates if the corresponding detection is a true (green
background) or false positive (red background).

Figures 2 to 6 compare models with hand-crafted costs (left) and learned costs (right). The learned model has a 2-layer
MLP that processes only bounding box information. Figures 7 to 10 compare different types of input for learned cost
functions. The model in the left figures only sees bounding box information (c.f . (B+O) in the paper), whereas the model
on the right also uses RGB patches for the unary potential, (c.f . Au+(B+O) in the paper). Finally, we show some negative
examples in Figures 11 to 13.

References
[1] W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015. 3, 4
[2] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In CVPR, 2012. 3,

4
[3] P. Ochs, R. Ranftl, T. Brox, and T. Pock. Bilevel Optimization with Nonsmooth Lower Level Problems. In SSVM, 2015. 2

Figure 2: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. Note the
failure case of the hand-crafted model in the last two frames in the right part of the image. Only two of the three cars are
correctly tracked.

Figure 3: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. Note the
failure case of the hand-crafted model in the last two frames in the middle part of the image. The car with the ID 8 is not
tracked anymore.

Figure 4: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. The hand-
crafted model is not able to detect the second car at all. The model with learned costs successfully tracks the car from the
third frame onwards.

Figure 5: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. While
both models have a false positive detection in the last frame due to inaccurate localization, the model with hand-crafted costs
cannot track that car in the first two frames.

Figure 6: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. The model
with hand-crafted costs has problems detecting and tracking the two small cars in the model of the image.

Figure 7: Left: model with only bounding box information as input for learning cost functions. Right: model with appearance
features as input (raw RGB patches) for the unary term. Having access to appearance features seems to help in suppressing
false positives from the underlying detector.

Figure 8: Left: model with only bounding box information as input for learning cost functions. Right: model with appearance
features as input (raw RGB patches) for the unary term. Having access to appearance features seems to help in suppressing
false positives from the underlying detector.

Figure 9: Left: model with only bounding box information as input for learning cost functions. Right: model with appearance
features as input (raw RGB patches) for the unary term. The model using appearance features detects one more person on
the left side of the image, while the other model misses it.

Figure 10: Left: model with only bounding box information as input for learning cost functions. Right: model with appear-
ance features as input (raw RGB patches) for the unary term. The model using appearance features detects two more person
(object IDs 28 and 25), while the other model misses them.

Figure 11: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. In this
failure case, the model with learned costs has one more false positive in the last frame on the right side of the image.

Figure 12: Left: model with hand-crafted costs. Right: model with learned costs from bounding box information. In this
failure case, the model with learned costs has one more false positive in the last frame on the left side of the image.

Figure 13: Left: model with only bounding box information as input for learning cost functions. Right: model with appear-
ance features as input (raw RGB patches) for the unary term. In this failure case, the model using appearance features does
not correctly track two pedestrians in the last two frames (object IDs 36 and 37).

