
Bounds relating the two formulations

1 Notations and problem formulation

Denote by D1, D2 two n × n symmetric pairwise geodesic distance matrices of two corresponding
shapes. Assume that the shapes are nearly isometric, with some unknown correspondence. D2 can
be thought of some perturbation of PD1P

T , denoted by D2 = PD1P
T + ∆D, where P encodes the

correspondence. Denote by

D1 = Q1Λ1Q
T
1

D2 = Q2Λ2Q
T
2 (1)

the eigendecomposition of D1 and D2. Define the elements of the n× n matrix W to be Wij =
√

Λij
for both shapes. Define X1 = Q1W1 and X2 = Q2W2, and note that D1 = X1X

T
1 and D2 = X2X

T
2 .

Denote by π(n) the group of n×n permutation matrices, by U(n) the group of n×n unitary matrices,
and by O(n) the group of n×n orthogonal matrices. Here, the norm ‖F‖2,∞ stands for max{‖fi‖2}ni=1,
where {fi} are the rows of F .

Consider the minimization
arg min
P∈π(n)

‖PD1P
T −D2‖∞, (2)

and the related form,
arg min

P∈π(n),C∈O(n)
‖PX1C −X2‖2,∞. (3)

We claim that the minimal value of (2), which approximates the Gromov-Hausdorff distance, is small
if and only if the value of (3) is small. Hence, for nearly isometric shapes, the alternative form could
be used. In the following sections, we present the relative bounds supporting this claim.

2 First direction

Let A1 and A2 be two matrices of the same size, and define B1 = A1A
T
1 and B2 = A2A

T
2 . Denote by

a1,i row i in A1 and by a2,i row i in A2, such that B1,ij = a1,ia
T
1,j and B2,ij = a2,ia

T
2,j . Suppose that

A1 and A2 satisfy
‖A1 −A2‖2,∞ < ε. (4)

Hence, for any i,
‖a1,i − a2,i‖2 < ε. (5)

Denote ei = a1,i − a2,i, then, we have

|B1,ij −B2,ij | = |a1,ia
T
1,j − a2,ia

T
2,j |

= |(a2,i + ei)(a2,j + ej)
T − a2,ia

T
2,j |

= |a2,ie
T
j + eia

T
2,j + eie

T
j |

≤ |a2,ie
T
j |+ |eiaT2,j |+ |eieTj |

≤ ‖a2,i‖2‖ej‖2 + ‖ei‖2‖a2,j‖2 + ‖ei‖22
< ε‖a2,i‖2 + ε‖a2,j‖2 + ε2, (6)

where we used the triangle inequality and Cauchy–Schwarz inequality. Since it applies for any i and
j, we obtained that

|B1 −B2|∞ < ε‖A2‖2,∞ + ε‖A2‖2,∞ + ε2

1



= 2ε‖A2‖2,∞ + ε2. (7)

Returning back to our problem, assume we have found a solution such that

‖PX1C −X2‖2,∞ < ε. (8)

By plugging A1 = PX1C and A2 = X2, we obtain

A1A
T
1 = PX1CC

TXT
1 P

T = PX1X
T
1 P

T = PD1P
T

A2A
T
2 = X2X

T
2 = D2, (9)

where we used the fact that C is orthogonal. Finally,

|PD1P
T −D2|∞ < 2ε‖X2‖2,∞ + ε2. (10)

Furthermore, notice that

‖X2‖2,∞ = ‖Q2W2‖2,∞ ≤ ‖Q2‖2,∞‖W2‖2,∞
= ‖W2‖2,∞ =

√
λmax(D2) (11)

Thus, if we manage to find a good solution to (3), it guaranties some bound on the minimum of (2).

3 Second direction

Let H and H̃ be some n × n real symmetric matrices and assume that H̃ is a small perturbation of
H, H̃ = H + ∆H. Denote by H = UΛUT and H̃ = Ũ Λ̃ŨT the eigendecompositions of H and H̃.
Suppose we denote the eigendecompositions by

H =
[
U1 U2

] [Λ1 0
0 Λ2

] [
UT1
UT2

]
(12)

and

H̃ =
[
Ũ1 Ũ2

] [Λ̃1 0

0 Λ̃2

] [
ŨT1
ŨT2

]
, (13)

such that

Λ1 = diag(λ1, λ2, ..., λk)
Λ2 = diag(λk+1, λk+2, ..., λn)
Λ̃1 = diag(λ̃1, λ̃2, ..., λ̃k)
Λ̃2 = diag(λ̃k+1, λ̃k+2, ..., λ̃n), (14)

where we construct the split as follows. Assume we choose an eigenvalue λ ∈ λ(Λ) and split Λ into
Λ1,Λ2, such that λ = λ1 = λ2 = ... = λk and λ /∈ λ(Λ2). So, if we define

δ = min
λ2∈λ(Λ2)

|λ2 − λ|, (15)

then δ > 0. Then, we split Λ̃ into Λ̃1, Λ̃2, such that Λ̃1 contains the eigenvalues that are nearest to λ,
or, in other words, we would like to maximize δ1, where

δ1 = min
λ̃∈λ(Λ̃2)

|λ̃− λ|. (16)

According to the Bauer-Fike theorem [1], for any λi ∈ λ(Λ) there exists λ̃j ∈ λ(Λ̃) such that

|λi − λ̃j | ≤ ‖U‖2‖U−1‖2‖∆H‖2 = ‖∆H‖2, (17)

and vice-versa - for any λ̃i ∈ λ(Λ̃) there exists λj ∈ λ(Λ) such that

|λj − λ̃i| ≤ ‖∆H‖2. (18)
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Note that when ‖∆H‖2 → 0, we have Λ̃1 → Λ1 and δ1 → δ.
Therefore, assuming ‖∆H‖2 is small enough, δ1 can be bounded by

δ1 > δ − ‖∆H‖2 > 0. (19)

Next, let Θ(U1, Ũ1) = arccos
(
(UT1 Ũ1Ũ

T
1 U1)1/2

)
be the canonical angle between the column spaces of

U1 and Ũ1, where the arccos acts as a matrix operator [4]. Then, according to [2], which based its
results on [3],

‖E‖F = ‖ sin(Θ(U1, Ũ1))‖F ≤
‖∆HU1‖F

δ1
, (20)

where we defined E = sin(Θ(U1, Ũ1)).
Since U1 holds k orthonormal columns, ‖U1‖2F = k, and we have

‖∆HU1‖F ≤ ‖∆H‖F ‖U1‖F =
√
k‖∆H‖F . (21)

Define ε =
√
k‖∆H‖F
δ1

, so that we finally get

‖E‖F ≤ ε. (22)

Matrix operators such as sin, cos and square-root on some matrix A can be defined as applying them
element-wise on the eigenvalues of A. Define B = UT1 Ũ1Ũ

T
1 U1. B is symmetric, and hence, it is easy

to see that Θ = arccos(B1/2) and E = sin(θ) must be symmetric matrices as well.
Denote by ΛE , ΛΘ and ΛB the diagonal eigenvalues matrices of E,Θ and B and by λE,i, λΘ,i and

λB,i the i-th eigenvalue of the corresponding terms. We have,

‖ΛE‖F = ‖E‖F ≤ ε. (23)

Suppose that ‖∆H‖F → 0. Since δ1 → δ > 0 is bounded, we get ε → 0, and ‖ΛE‖F → 0, and
consequently, for any i, λE,i → 0.
By definition, λΘ,i = arcsin(λE,i). Since arcsin is continuous around 0, λΘ,i → 0. Similarly, cos and
square are continuous so λB,i → 1 and consequently ΛB → I(n). B is symmetric and hence it can be
written as an eigendecomposition

B = CBΛBC
T
B , (24)

where CB is orthogonal. We have

B = UT1 Ũ1Ũ
T
1 U1 = CBΛBC

T
B . (25)

Moving the orthogonal matrix CB to the left, and denoting V = ŨT1 U1CB, we obtain

V TV = CTBU
T
1 Ũ1Ũ

T
1 U1CB = ΛB. (26)

This implies that the columns of V are orthogonal and their squared norms are equal to the eigenvalues
of B. Therefore, there exists some orthogonal matrix CV such that V = CV

√
ΛB. We have

V = ŨT1 U1CB = CV
√

ΛB, (27)

and since U1 and Ũ1 are orthogonal,

ŨT1 = CV
√

ΛBC
T
BU

T
1 . (28)

or
U1CU = Ũ1, (29)

where CU = CB
√

ΛBC
T
V .

Next, recall that by our construction, all values in the diagonal of Λ1 are equal, or in other words,
Λ1 = λI. Similarly,

√
Λ1 =

√
λI, so it can be swapped with any matrix. We obtain

U1

√
Λ1CU = U1CU

√
Λ1 = Ũ1

√
Λ1. (30)
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Define Cλ = CBC
T
V , and note that if ε → 0 then ΛB → I and hence CU = CB

√
ΛBC

T
V → Cλ.

Therefore, there exists some orthogonal matrix Cλ such that for ε→ 0,

Ũ1

√
Λ̃1 → Ũ1

√
Λ1 = U1

√
Λ1CU → U1

√
Λ1Cλ. (31)

To recap, after choosing some λ ∈ λ(Λ) and splitting the eigendecomposition of H and H̃ accordingly,
we obtained that there exists some orthogonal matrix Cλ such that

Ũ1

√
Λ̃1 → U1

√
Λ1Cλ. (32)

for ‖∆H‖F → 0. It is possible now to choose a different λ ∈ λ(Λ) and repeat this process. The
obtained matrices Cλ can be then collected and inserted as blocks into the diagonal of a large matrix
C, such that

Ũ
√

Λ̃→ U
√

ΛC. (33)

for ‖∆H‖F → 0.
Back to our problem, define H = PD1P

T and H̃ = D2 = PD1P
T + ∆D. Then by construction, there

exists some orthogonal matrix C such that

Q2

√
Λ2 → Q1

√
Λ1C, (34)

or
‖PX1C −X2‖2,∞ → 0, (35)

for ‖∆D‖ → 0.
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