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A. Probabilistic Face Parameterization

A.1. Multilinear Representation

In this paper, we collect the Nid ⇥ Nexp = 150 ⇥ 47

blendshapes to form the multilinear face representation, as
suggested by Cao et al. [1]. Provided the shape dimension
NM ⇥ 3 = 11510 ⇥ 3, the dataset forms a tensor D 2
R3NM⇥Nid⇥Nexp . By subtracting D with the mean face mesh
¯

f , the applied data tensor is T = D � ¯

f .
The multilinear face representation requires the unary

matrices Uid and Uexp, which can be derived from High-
order SVD (HOSVD) with respect to the second and third
dimensions for identity and expression, respectively. The
core tensor is thus C = T ⇥2Uid ⇥3Uexp, and inversely the
data tensor can be derived as T = C⇥2U

>
id ⇥3U

>
exp. There-

fore, one face can be represented by linear combination of
the data tensor with respect to the identity xid 2 RNid and
expressions xid 2 RNexp , together with the mean face model
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wid and wexp are the parameters employed in this paper.

A.2. Learning the Identity and Expression Priors

Each face mesh in the training dataset is assigned a one-
hot label vector for identity xid and one for expression xexp.
For example, the face mesh with the neutral expression from
the first subject has xid = [1, 0, . . . , 0]> 2 RNid and x

>
exp =

[1, 0, . . . , 0]> 2 RNexp .
Therefore, the mean face model ¯f has ¯
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1. The identity has Var(xid) =
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I, where I is the identity matrix and I is the matrix filled
by one. Similarly, Var(xexp) ' 1

Nexp
I. The mean and vari-

ance of wid and wexp are thus
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We also observe that the mean face ¯

f corresponds to ¯

xid
and ¯

xexp, thus it results in
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which means these priors will not bias the face model rep-
resentations.

We need to mention that µid and µexp should not be zero
vectors. If we assume that µid = 0, it will result in the
independence of the face model with respect to the varying
of the expression parameters, i.e., C ⇥2 w

>
id ⇥3 w

>
exp ' 0

in which the wid is usually near to the zero vector. The
same problem happens when µexp = 0. What’s worse, such
priors lead to instable solutions, i.e., C⇥3w

>
exp suffers such a

small magnitude that the online adaptation system (derived
from section 4.2) with respect to wid will be unstable.

B. Probabilistic Facial Pose Tracking

B.1. Ray Visibility Score

The ray visibility score is the Kullback-Leibler diver-
gence between pP(y) and pQ!P(y;✓), written as:

S(Q,P;✓) = D
KL

[pQ!P(y;✓)||pP(y)]

=

NM
X
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D
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where D
KL

[pQ!P(yn;✓)||pP(yn)] is further derived as
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B.2. Optimization of the Ray Visibility Score

We apply the quasi-Newton update ✓(t)
= ✓(t�1)

+�✓
using the trust region approach for S(Q,P;✓(t�1)

) given
the previous �(t�1), in which the key ingredient is the gradi-
ent and Hessian calculations with respect to ✓. Straightfor-
ward calculation is not trivial, especially for rotation vector
!, but S(Q,P;✓) can be written in an approximated form
to reduce the complexity.

Assume we have the mean and variance for the current
warped face model point ¯q

n
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we are interested in the incremental pose �✓ in the ray vis-
ibility score. The incremental rotation matrix is approx-
imated a skew-symmetric representation, i.e., R(�!) =
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and the term about the warped variance is
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approximated quadratic forms with respect to �!, thus the
gradient and Hessian calculations about the rotation vector
become much simpler. The related calculations with respect
to the scale factor �↵ and translation vector �t involve the
previous approximations and thus become simpler as well.

Moreover, to reduce the computational complexity even
further, we can force the variance ⌃M,[n] = �2

[n]I, with
�[n] derived from the canonical face point representation.
Thus ⌃(!)
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2 makes contribution to the update of !.

B.3. Online Identity Adaptation

The online identity adaptation can be progressively per-
sonalized to the test subject, as visualized in Figure 2. With

Figure 1. Examples of facial pose results with the visibility
detection. The third column shows the visibility masks. The
last column shows the personalized face models warped on
the point clouds. Best viewed in color.

different poses are used to update the identity distribution,
the face model is continuously adapted to the test subject.

C. Facial Poses with Visibility Detection
In addition to the facial pose results visualized in the pa-

per, we also illustrate some examples with the personalized
face models, as shown in Figure 1. The proposed method
can effectively check the visibility of a face model with re-
spect to the input point cloud, and its pose estimation is
robust to severe occlusions, e.g., profiled faces, accessories
and hands, etc.
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Figure 2. We continuously adapt the identities of the face
model to different users. (a)-(c) are three examples showing
that the face model can be gradually personalized when the
facial depth data from different poses are captured during
the tracking process. The face model is initialized with the
generic face model.
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