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1. Network
We propose an encoder-decoder CNN for intrinsic im-


age decomposition. The basic network structure is shown
in Figure 1. Figure 1 shows the feature size in each en-
coder/decoder layer. The network design is mirrored with
symmetric feature sizes for the encoder and the decoder, as
well as 3-channel RGB input and output intrinsic compo-
nents (256 × 256 × 3). To keep visual details and produce
sharp outputs (e.g. CNNs as used by Direct Intrinsics [5]
usually produce blurry results), we link early features in
encoder layers to corresponding decoder layers of the same
size (red arrows in the figure). Therefore, we call our net-
work Mirror-Link CNN.


We build our network with simple layers. For the en-
coder, we only use a convolutional layer with 3 × 3 ker-
nel and stride 2 to extract features for each level (every


Figure 1: Network Structure.


conv layer is followed by BN and ReLU). For the decoder,
we first up-sample the previous layer’s feature maps (un-
necessary for the first decoder layer), and then concatenate
them with their encoder counterpart. After that, features are
passed through a Conv(3× 3)-BN-ReLU sequence.


We use shared encoder and separate decoders, since in-
trinsic components (albedo, shading and specular) are not
independent of each other. To further strengthen the cor-
relation between albedo, shading and specular, we link the
features across decoders (blue arrows in the figure).


Some other networks use the same idea of skip links, e.g.
U-Net [7] and Deep Reflectance Map [6]. However, our
network is different from theirs in following three aspects:
We target a different and more complex image-to-image re-
gression problem; our network is strictly symmetric in fea-
ture maps, including input and output; we have three out-
puts/decoders with a shared input/encoder.


We evaluate many variations of the network, including:
1) independent Mirror-Link network for albedo, shading
and specular, 2) shared encoder without cross links (blue ar-
rows) between decoders; 3) different numbers of skip links
(red arrows) between corresponding encoder and decoder.
Table 1 lists benchmark errors.


Analysis. By comparing Independent and Shared En-
coder networks, we observe that although the latter contains
fewer parameters, the performance is comparable for albedo
and shading, even better for specular. Therefore, we con-
sider a single shared encoder sufficient for extracting fea-
tures for all 3 outputs.


As a multi-task CNN, there are some correlations among
our 3 intrinsic components. Therefore, in Mirror-Link net-
work, we further strengthen such correlations by cross links
in the decoders. The performance is improved significantly.


To evaluate the skip links from the encoder to the de-
coder, we test Skip Link-3 and Skip Link-0. In Skip Link-
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Albedo Shading Specular
MSE LMSE DSSIM MSE LMSE DSSIM MSE LMSE DSSIM


Independent 0.0116 0.0469 0.1183 0.0059 0.0111 0.0667 0.0064 0.0845 0.1179
Shared Encoder 0.0122 0.0503 0.1210 0.0069 0.0124 0.0746 0.0058 0.0767 0.1077
Mirror-Link 0.0083 0.0353 0.0939 0.0055 0.0097 0.0622 0.0042 0.0578 0.0831
Skip Links - 3 0.0127 0.0527 0.1282 0.0079 0.0149 0.0815 0.0059 0.0858 0.1152
Skip Links - 0 0.0226 0.0794 0.1705 0.0118 0.0225 0.0977 0.0084 0.1234 0.1448


Table 1: Numeric comparison for variant network structures. Independent uses 3 independent encoder-decoder networks for
albedo, shading and specular, nothing is shared. Shared Encoder uses the shared encoder and separate decoders, but without
cross links(blue arrows in the figure) between decoders. Skip Link-0 is the network without skip links (red arrows) between
encoder and decoder. Skip Link-3 uses 3 links in the middle. Mirror-Link contains all links and is the model we used in this
paper. We use the same metrics as [5], where MSE is a scale-invariant version.


3, we remove 3 links outside while keep 3 in the middle.
In Skip Link-0, we remove all the skip links (red arrows in
the figure). We observe that skip links improve the perfor-
mance.


2. Loss Functions
Similar to [5], a scale-invariant MSE(SMSE) loss, com-


bined with standard MSE loss, is employed in our work.
The SMSE first scales the predicted output and then com-
pares MSE with the groundtruth.


SMSE(X,Xgt) =MSE(αX,Xgt) (1)


α = argminMSE(αX,Xgt) (2)


Previous works assume that I = A × S, making the
scaling ambiguity in αA and 1


αS. In our formulation for
non-Lambertian objects as I = A × S + R, we also have
the same scaling ambiguity for A × S. Thus, we apply the
scale-invariant loss for albedo and shading. However, for
the specularR, either scale-invariant (αR) or shift-invariant
(α+R) would bring different patterns to A× S. Thus, we
simply apply MSE loss for the specular output. Since we
only have ground-truth for objects, we use masks for back-
ground pixels for computing the loss and back-propagating
gradients.


For albedo and shading, we use


EA,S = 0.95× SMSE + 0.05×MSE, (3)


and for specular, we use:


ER =MSE. (4)


3. Rendering Pipeline
There are about 57, 000 models in the ShapeNet core


database [3]. Most of them have materials and textures. All
these models are normalized and aligned to a unit bounding


box. Due to computing resource limitations, we only render
31, 072 models, more than a half of the database.


A physics-based open source render Mitsuba [4] is em-
ployed for the rendering task. It can directly render the input
image and the groundtruth albedo. For the shading compo-
nent, we replace materials with pure diffuse white for ren-
dering. For the specular, we set the diffuse to 0 and keep the
specular for rendering.


Models are rendered under all 98 environment maps we
have. Viewpoints are randomly assigned on the upper hemi-
sphere for the object in each environment map. We use a
low discrepancy Halton sequence to generate random view-
points to keep them uniform yet random in the distribution.


We use path tracing to render images. To reduce the
rendering time, we render albedo, shading and specular
(as well as an object mask) and synthesize the image by
I = A×S +R. It saves us 30% of rendering time. Albedo
and mask rendering is simple and fast, while image, shading
and specular require many more samples for path tracing.


4. More Results
Pages 3-6 show some results from our synthetic testing


set. Groundtruth (reference) is included for visual compar-
isons. Figure 2 shows results on real images downloaded
from the Internet. Results from Direct Intrinsics [5] (both
their released model and the model trained on our dataset)
and SIRFS [1] are provided for visual comparisons.
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Figure 2: Real image results from our method, SIRFS, Direct Intrinsics(DI) and Direct Intrinsics model trained on our
dataset(DI*). The first column shows input image(top) and specular solved by our model(bottom). Other columns are
albedo(top) and shading(bottom) results. We will publish our trained model as well as the synthetic dataset. For more results,
please try our released model.







5. Another synthetic evaluation


We build an object-level intrinsic image dataset based on
ShapeNet. Objects are rendered within real captured envi-
ronment maps to approximate realistic illuminations. For
more realistic and advanced effects such as occlusion and
inter-reflection, rendering objects within 3D scenes is pre-
ferred. Figure 3 shows a photo-realistic rendered scene [2].
Unfortunately, there is no existing large-scale public real-
istic scene database for generating training data. However,
we can still make use of those limited number of public 3D
scenes to generate groundtruth data for evaluation.


Figure 3: A rendered kitchen scene.


5.1. Pepper


The red and orange peppers on the table are rendered.
There are sharp specular highlights, as well as inter-
reflections from nearby objects. Figure 4 shows sample
results. Table 2 lists estimation errors. Although there is
no similar object in our training set, our method produces
acceptable results especially for shading and specular.


MSE LMSE DSSIM
albedo shading albedo shading albedo shading


Pe
pp


er
-1 SIRFS 0.0078 0.0110 0.1294 0.0179 0.3287 0.0959


DI 0.0083 0.0093 0.0909 0.0091 0.3345 0.0530
Ours 0.0058 0.0030 0.0883 0.0040 0.3219 0.0446


specular 0.0012 0.0162 0.0776


Pe
pp


er
-2 SIRFS 0.0032 0.0255 0.1283 0.0146 0.3491 0.1054


DI 0.0033 0.0147 0.0940 0.0052 0.3293 0.0760
Ours 0.0022 0.0023 0.0789 0.0017 0.3302 0.0544


specular 0.0009 0.0114 0.0636


Pe
pp


er
-3 SIRFS 0.0037 0.0033 0.1322 0.0035 0.1901 0.0308


DI 0.0064 0.0077 0.0743 0.0055 0.2037 0.0682
Ours 0.0006 0.0009 0.0963 0.0016 0.1789 0.0165


specular 0.0002 0.0090 0.0300


Table 2: Error comparison for peppers.


Input GT Ours DI SIRFS Specular


Figure 4: Visual results for the red pepper. The last column
shows the groundtruth specular(top) and ours(bottom).


5.2. Kettle


The green metal kettle is also rendered for evaluation.
In this case, the specular is not as sharp as the pepper, but
with larger area. Figure 5 shows the visual results. Our al-
gorithm produces reasonable specular and shading. For the
albedo component, although our model failed to fill the cor-
rect color for the holes on the specular area, it still produces
better results than others. Table 3 shows the numeric errors.


Input GT Ours DI SIRFS Specular


Figure 5: Visual results for the green kettle. The last column
shows the groundtruth specular(top) and ours(bottom).







MSE LMSE DSSIM
albedo shading albedo shading albedo shading


K
et


tle
-1


SIRFS 0.0076 0.0128 0.0890 0.0171 0.2912 0.0943
DI 0.0112 0.0679 0.1275 0.0576 0.2882 0.1945


Ours 0.0027 0.0063 0.0310 0.0103 0.2297 0.0737
specular 0.0015 0.0255 0.0439


K
et


tle
-2


SIRFS 0.0060 0.0307 0.0777 0.0190 0.2851 0.1592
DI 0.0042 0.0717 0.0508 0.0354 0.3295 0.2329


Ours 0.0027 0.0101 0.0326 0.0091 0.2049 0.1254
specular 0.0009 0.0100 0.0273


Table 3: Error comparison for the kettle.


6. Intrinsic Video
We apply our model to each frame in a video, without


any temporal consistency constraints across frames. It pro-
duces stable and reasonable results.
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