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In this supplementary material, we provide details on the
graph classification task (Section 1), on choice of edge la-
beling for point clouds (Section 2), and on robustness of
point cloud classification to noise (Section 3).

1. Details on Graph Classification Benchmark
In this section we describe the differences in our network

architecture to the one introduced for NCI1 in the main pa-
per and discuss evaluation results for each dataset in detail.

NCI1. ECC (83.80%) performs distinctly better than con-
volution methods that are not able to use edge labels
(DCNN [1] 62.61%, PSCN [3] 78.59%). Methods not
approaching the problem as convolutions on graphs but
rather combining deep learning with other techniques are
stronger (Deep WL [5] 80.31%, structure2vec [2] 83.72%)
but are still outperformed by ECC. While the Weisfeiler-
Lehman graph kernel remains the strongest method (WL
[4] 84.55%), it is fair to conclude that ECC, structure2vec,
and WL perform at the same level.

NCI109. We use the same ECC-network configuration
and training details as described in Section 4.3 for NCI1,
since both datasets are similar. ECC (82.14%) performs dis-
tinctly better than DCNN [1] (62.86%), which is not able to
use edge labels, and is on par with non-convolutional ap-
proaches (Deep WL [5] 80.32%, structure2vec [2] 82.16%,
WL [4] 84.49%).

MUTAG. As MUTAG is a tiny dataset of small graphs,
we trained a downsized ECC-network to combat overfit-
ting. Using the notation from Section 4.3, its configuration
is C(16)-C(32)-C(48)-MP-C(64)-MP-GAP-FC(64)-D(0.2)-
FC(2), all other details are as with NCI1. While by num-
bers ECC (89.44%) outperforms all other approaches ex-
cept of PSCN [3] (92.63%), we note that all four leading
methods (Deep WL [5] 87.44%, structure2vec [2] 88.28%,
ECC, PSCN) can be seen to perform equally well due to
fluctuations caused by the dataset size. We account the

tiny decrease in performance with test-time randomization
(88.33%) to the same reason.

ENZYMES. Due to higher complexity of this task we
use a wider ECC-network configured as C(64)-C(64)-
C(96)-MP-C(96)-C(128)-MP-C(128)-C(160)-MP-C(160)-
GAP-FC(192)-D(0.2)-FC(6) using the notation and other
details in Section 4.3. As this dataset is not edge-labeled,
we do not expect to obtain the best performance. Indeed,
our method (53.50%) performs at the level of Deep WL [5]
(53.43%) and is overperformed by WL [4] (59.05%) and
structure2vec [2] (61.10%). Note that the gap to the other
convolution-based method DCNN [1] (18.10%) is huge and
there is an improvement of more than 4 percentage points
due to edge labels in coarser graph resolutions from Kron
reduction.

D&D. Due to large graphs in this dataset we de-
signed a ECC-network with more pooling configured as
C(48)-C(48)-C(48)-MP-C(48)-MP-C(64)-MP-C(64)-MP-
C(64)-MP-C(64)-MP-GAP-FC(64)-D(0.2)-FC(2) using the
notation and other details in Section 4.3. As this dataset
is not edge-labeled, we do not expect to obtain the best
performance. Our method (74.10%) is overperformed by
the others who evaluated on this dataset (PSCN [3] 77.12%,
WL [4] 79.78%, structure2vec [2] 82.22%), though the
margin is not very large.

2. Edge Labels for Point Clouds
In Section 3.4 we defined edge labels L(j, i) as the off-

set δ = pj − pi in Cartesian and spherical coordinates,
L(j, i) = (δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx).
Here, we explore the importance of individual elements in
the proposed edge labeling and further evaluate labels in-
variant to rotation about objects’ vertical axis z (IRz). Ta-
ble 1 conveys that models with isotropic (60.7) or no labels
(38.9) perform poorly as expected, while either of the coor-
dinate systems is important. IRz labeling performs compa-
rably or even slightly better than our proposed one. How-



Label L(j, i) Mean F1

(δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx) 78.4
(δx, δy, δz) 76.1

(||δ||, arccos δz/||δ||, arctan δy/δx) 77.3

(||δxy||, δz, ||δ||, arccos δz/||δ||) 75.8
(||δxy||, δz) 78.2

(||δ||, arccos δz/||δ||) 78.7

(||δ||) 60.7
(0) 38.9

Table 1. ECC on Sydney with varied edge label definition.
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Figure 1. Robustness to point removal and Gaussian noise.

ever, we believe this a property of the specific dataset and
may not necessarily generalize, an example being MNIST,
where IRz is equivalent to full isotropy and decreases accu-
racy to 89.9%.

3. Robustness to Noise

Real-world point clouds contain several kinds of arti-
facts, such as holes due to occlusions and Gaussian noise
due to measurement uncertainty. Figure 1 shows that ECC
is highly robust to point removal and can be made robust to
additive Gaussian noise by a proper training data augmen-
tation.
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