
8. Supplementary Material
Proof of Proposition 1

Proposition.
∑
i∈F〈θi, µi〉 =

∑
i∈F〈θ

φ
i , µi〉, whenever

µ1, . . . , µk obey the coupling constraints.

Proof.
∑
i∈F〈θφ, µi〉 =∑

i∈F〈θ, µi〉 +
∑
ij∈E
〈φ(i,j), A(i,j)µi〉+ 〈φ(j,i), A(j,i)µj〉︸ ︷︷ ︸

(∗)

=

∑
i∈F〈θ, µi〉 , where (∗) = 0 due to φ(i,j) = −φj,i) and

A(i,j)µi = A(j,i)µj .

Proof of Proposition 2

Proposition. Let conv(Xi) = {µi : Aiµi ≤ bi} with
Ai ∈ Rn×m. Let the messages in problem (15) have
size n1, . . . , n|J|. Then (15) is a linear program with
O(n+n1+ . . .+n|J|) variables andO(m+n1+ . . .+n|J|)
constraints.

Proof. From LP-duality we know that µ∗i ∈
argminµi:Aµi≤bi〈c, µi〉 iff ∃y ≥ 0 : A>i y = ci and
〈bi −Aiµ∗i , y〉 = 0. Hence, (15) can be rewritten as

max
y≥0,∆(i,j1),...,∆(i,jl)

〈δ, θφ+∆〉
s.t. 〈bi −Aiµ∗i , y〉 = 0

A>i y = θφ+∆

∆(i,j)(s)

{
≤ 0, νi(s) = 0

≥ 0, νi(s) = 1

where νi := A(i,j)µ
∗
i

(19)
θφ+∆ is a linear expression and µ∗ is constant during the
computation, hence (19) is a LP.

Proof of Lemma 1 and Lemma 2

Lemma. Let ij ∈ E be a pair of factors related by the
coupling constraints and φ(i,j) be a corresponding dual
vector. Let x∗i ∈ argmin

xi∈Xi
〈θφi , xi〉 and ∆(i,j) satisfy

∆(i,j)(s)

{
≥ 0, ν(s) = 1

≤ 0, ν(s) = 0
, where ν := A(i,j)x

∗
i . (20)

Then x∗i ∈ argmin
xi∈Xi

〈θφ+∆i , xi〉 implies D(φ) ≤ D(φ+∆).

Proof. Let x∗j ∈ argminxj∈Xj 〈θ
φ
j , xj〉 be a solution of (13)

at which the dual lower bound (11) is attained before the
update and x∗∗j ∈ argminxj∈Xj 〈θφ − A>(j,i)∆∗(i,j), xj〉 be
an integral solution at which the dual lower bound is attained
after φ has been updated. Variable x∗i as chosen in (13) is

optimal for θφ and for θφ+∆ by construction. We need to
prove

〈θφi , x∗i 〉+
∑
j∈J
〈θφj , x∗j 〉

≤ 〈θφi +
∑
j∈J

A>(i,j)∆
∗
(i,j), x

∗
i 〉+

∑
j∈J
〈θφj−A>(j,i)∆∗(i,j), x∗∗j 〉 .

(21)

We shuffle all terms with variables ∆∗(i,j), j ∈ J to the right
side and all other terms to the left side.

〈θφi , x∗i − x∗i 〉+
∑
j∈J
〈θφj , x∗j − x∗∗j 〉

≤ 〈
∑
j∈

A>(i,j)∆
∗
(i,j), x

∗
i 〉 −

∑
j∈J
〈A>(j,i)∆∗(i,j), x∗∗j 〉 (22)

All terms on the left side are smaller than zero due to the
choice of x∗j being minimizers w.r.t. θφj . Hence, it will be
enough to prove the above inequality when assuming the left
side to be zero. We rewrite the scalar products by transposing
A>(i,j) and A>(j,i).

0 ≤
∑

j∈J

{
〈∆∗(i,j), A(i,j)x

∗
i −A(j,i)x

∗∗
j 〉
}

(23)

Due to A(j,i)x
∗∗
j ∈ {0, 1}dim(φ(i,j)) and A(i,j)x

∗
i ∈

{0, 1}dim(φ(i,j)) by Definition 1 and ∆∗(i,j) ≶ 0 whenever
A(i,j)x

∗
i ≶ 0, the result follows.

Lemma. Let ∆ ∈ AD(θφi , x
∗
i , J) then D(φ) ≤ D(φ+∆).

Proof. Analoguous to the proof of Lemma 1.

Proof of Theorem 1

Theorem. Algorithm 2 monotonically increasis the dual
lower bound (11).

Proof. We prove that (i) the receiving messages and (ii) the
sending messages step improve (11).
(i) Directly apply Lemma 1. (ii) The difficulty here is that we
compute descent directions from the current dual variables
φ in parallel and then apply all of them simultaneously. By
Lemma 2, the send message step is non-decreasing when
called for each set J1, . . . , Jl in Algorithm 2. The dual lower
bound L(φ) is concave, hence we apply Jensen’s inequality
and note that ω1 + . . .+ ωl ≤ 1 to obtain the result.

Proof of Theorem 2

Theorem. If θφ is marginally consistent, the dual lower
bound D(φ) cannot be improved by Algorithm 2.

First, we need two technical lemmata.



Lemma 3. Let X ⊂ {0, 1}n, A ∈ {0, 1}K×n
and Ax ∈ {0, 1}K ∀x ∈ X . Let x∗ ∈ X
be given and define ν∗ := Ax∗. Let ∆ ∈ RK

be given such that ∆(s)

{
≥ 0, ν∗(s) = 1

≤ 0, ν∗(s) = 0
. Then

(i) x∗ ∈ argminx∈X〈−∆,Ax〉 and (ii) for x∗∗ ∈
argminx∈X〈−∆,Ax〉, ν∗∗ = Ax∗∗ it holds that ∆(s) = 0
whenever ν∗(s) 6= ν∗∗(s).

Proof. Let x ∈ X and define ν = Ax. Then

〈−∆,Ax〉
=

∑
s:ν∗(s)=1=ν(s)

−∆(s)

︸ ︷︷ ︸
(∗)

+
∑

s:ν(s)=1>0=ν∗(s)

−∆(s)

︸ ︷︷ ︸
(∗∗)

≥
∑

s:ν∗(s)=1

−∆(s)

︸ ︷︷ ︸
(∗∗∗)

= 〈−∆,Ax∗〉 (24)

because (∗) ≥ (∗ ∗ ∗) due to ∆(s) ≥ 0 for ν∗(s) = 1 and
(∗∗) ≥ 0 due to∆(s) ≤ 0 for ν∗(s) = 0. This proves (i) and
(ii) is proven by observing that (∗∗) = 0 and (∗) = (∗ ∗ ∗)
must also hold.

Lemma 4. Let x∗i , x
∗∗
i ∈ argminxi∈Xi〈θφ, xi〉 be two solu-

tions to the i-th factor for the current reparametrization θφ.
If ∆ is admissible w.r.t. x∗i then ∆ is also admissible w.r.t.
x∗∗i .

Proof. As both x∗i and x∗∗i are optimal to
θφ and x∗i is also optimal to θφ+∆, we have
〈∆(i,j), A(j,i)x

∗
i 〉 ≤ 〈∆(i,j), A(j,i)x

∗∗
i 〉. By Lemma 3,

(i) also 〈−∆(i,j), A(j,i)x
∗
i 〉 ≤ 〈−∆(i,j), A(j,i)x

∗∗
i 〉

holds, hence equality must hold. This shows
x∗∗i ∈ argminxi∈Xi〈θφ+∆, xi〉. Second, Lemma 3, (ii) im-
plies that ∆(s) = 0 whenever ν∗(s) 6= ν∗∗(s). This proves

that ∆(i,j)(s)

{
≥ 0, ν∗∗(s) = 1

≤ 0, ν∗∗(s) = 0
, ν∗∗ := A(i,j)x

∗∗
i .

Proof of Theorem 2. It is sufficient to show that for
marginally consistent θφ for S, the update ∆ computed by
Algorithm 1 on an arbitrary factor i ∈ F and some set J ⊂
NG(i) has the following properties: (i) L(φ) = L(φ+∆),
(ii) θφ+∆ is marginally consistent for S. For an easier proof,
we only consider the case J = {j}. The general case can be
proven analoguously.

(i) Let x∗i ∈ Si, x∗j ∈ Sj with A(i,j)x
∗
i = A(j,i)x

∗
j . We

have to show that

min
xi∈Xi

〈θφi , xi〉+ min
xj∈Xj

〈θφj , xj〉 = min
xi∈Xi

〈θφ+∆i , xi〉+ min
xj∈Xj

〈θφ+∆j , xj〉
(25)

Due to x∗i optimal to θφ+∆i , since by Lemma 4 the
update ∆ is admissible for x∗i , it remains to show
that x∗j ∈ argminxj∈Xj 〈θφ+∆, xj〉. As x∗j ∈
argminxj∈Xj 〈θφ, xj〉, it is sufficient to prove that x∗j ∈
argminxj∈Xj 〈−∆(i,j), A(j,i)xj〉. This follows from

Lemma 3 (i). We conclude by noting 〈θφi , x∗i 〉+ 〈θφj xj〉 =
〈θφ+∆i , x∗i 〉+ 〈θφ+∆j xj〉.

(ii) The computations in (i) show that
Si ⊆ argminxi∈Xi〈θ

φ+∆
i , xi〉 and Sj ⊆

argminxj∈Xj 〈θ
φ+∆
j , xj〉. The reparametrizations of

all other factors stay the same: θφ+∆k = θφk for k ∈ F\{i, j}.
Hence, θφ+∆ is marginally consistent for S after the
update.

9. Special Cases: Graphical Model Solvers
We will show how Algorithm 2 subsumes known

message-passing algorithms MSD [74], TRWS [48],
SRMP [49] and MPLP [28] for MAP-inference with com-
mon graphical models, considered in Example 1.

Solver Primitives (13) and (15). As it can
be seen, all factors in (5) are of the form
Xi = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
and conv(Xi) = {µ ≥ 0 : 〈1, µ〉 = 1} is a dim(Xi)-
dimensional simplex.

In all message passing algorithms [48, 49, 74, 28],
there are two types of invokations of Algo-
rithm 1 together with solutions of the accom-
panying optimization problem (13) and (15):

Alg. 1
input

Factor
Optimization

(13)

Reparametrization
adjustment (15)

i = u ∈ V
J = {uv}
uv ∈ E

min
xu∈Xu

{θφu(xu)}

∆∗(u,uv)(xu) =

min
x′u∈Xu

θφu(x
′
u)

− θφu(xu)

i = uv ∈ E
J = {u}
u ∈ V

min{θφu(xu, xv)}
(xu, xv) ∈ Xu ×Xv

∆∗(uv,u)(xu) =

min
x′uv∈Xuv

θφuv(x
′
uv)

− min
xv∈Xv

{θuv(xu, xv)}

MAP-inference Solvers. In Table 1 we state solvers
MSD [74], TRWS [48], SRMP [49] and MPLP [28] as spe-
cial cases of our framework. Factors are visited in the order
they are read in.



Algorithm Current
factor

Jreceive J1∪̇ . . . ∪̇Jl ω

MSD [74] u ∈ V NG(u) {uv} ⊂ NG(u) ω1, . . . = 1/|NG(u)|
uv ∈ E ∅ — —

MPLP [28] u ∈ V ∅ — —
uv ∈ E {u, v} {u}, {v} ω1 = 1/2 = ω2

TRWS [48]
SRMP [49]

forward pass:
u ∈ V {uv : v ∈ NG(u), v < u} {uv} : v ∈ NG(u), v > u ω1, . . . = 1/max({v∈NG(u):v>u},{v∈NG(u):v<u})

backward pass:
u ∈ V {uv : v ∈ NG(u), v > u} {uv} : v ∈ NG(u), v < u ω1, . . . = 1/max({v∈NG(u):v>u},{v∈NG(u):v<u})
uv ∈ E ∅ — —

Table 1. [74, 48, 49, 28] as special cases of Algorithm 2.

Remark 1. We have only treated the case of unary θu, u ∈ V
and pairwise potentials θuv, uv ∈ E here. MPLP [28] and
SRMP [49] can be applied to higher order potentials as well,
which we do not treat here.SRMP [49] is a generalisation of
TRWS [48] to the higher-order case.

Remark 2. There are convergent message-passing algo-
rithms such that factors comprise trees [72, 65]. Their anal-
ysis is more difficult, hence we omit it here.

Note that our framework generalizes upon [48, 49, 28,
74, 65, 72] in several ways: (i) Our factors need not be
simplices or trees. (ii) Our messages need not be marginal-
ization between unary/pairwise/triplet/. . . factors. (iii) We
can compute message updates on more than one coupling
constraint simultaneously, i.e. we may choose J1∪̇ . . . ∪̇Jl
in Algorithm 2 to be different than singleton sets. (i) and (ii)
affect LP-modeling, (iii) affects computational efficiency:
By considering multiple messages at once in Procedure 1,
we may be able to make larger updates∆∗, resulting in faster
convergence.


