8. Supplementary Material

Proof of Proposition 1

Proposition. - (0;, i) Zier?’ Wi), whenever

1, ..., obey the coupling constraints.
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where (x) = 0 due to ¢; j) = —¢; ;) and
Ak = AGaky- O

Proof of Proposition 2

Proposition. Ler conv(X;) = {p; : Aijp;
A; € R"™ ™, Let the messages in problem (15) have
size ny,...,ny. Then (15) is a linear program with
O(n+ny+...+ny ) variables and O(m~+ny+...4+n) )
constraints.
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Proof. From LP-duality we know that pu €
argming, . 4, <p, (¢, i) iff Jy > 0 : Aly = ¢; and
(b; — A;uf,y) = 0. Hence, (15) can be rewritten as

max (6,09+4)
Y20,4(,51)5- 86,5
S.t. <b1 — AZ/JJ:, y> =0
Al y =got4
<0, vi(s)=0
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where v; == A j)u;
(19)
6914 is a linear expression and p* is constant during the
computation, hence (19) is a LP. O

Proof of Lemma 1 and Lemma 2

Lemma. Let ij € E be a pair of factors related by the
coupling constraints and ¢; jy be a corresponding dual

vector. Let x} € argmin(é)f, x;) and A jy satisfy
z,€X;

>0, v(s)=1 i
e {< 0, w(s)=0 V= A i - 20)

Then z} € argmin(00" 2, 2;) implies D(¢) < D(¢ + A).
z; €X;

Proof. Letx} € argmin, cx (07, 7;) be a solution of (13)
at which the dual lower bound (1 l) is attained before the
update and 27" € argmin, ¢y (6° A G z)A(”), x;) be
an integral solution at which the dual lower bound 1s attalned

after ¢ has been updated. Variable x as chosen in (13) is

optimal for ¢ and for 624 by construction. We need to
prove
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We shuffle all terms with variables A*
side and all other terms to the left s1de
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]),j € J to the right

All terms on the left side are smaller than zero due to the
choice of x being minimizers w.r.t. 9;5. Hence, it will be
enough to prove the above inequality when assuming the left
side to be zero. We rewrite the scalar products by transposing
Al and A(J o

(4.9)
0< Zje] {<A?i,j)7A(iJ)

Due to Agpzi™ € {0,1}dim(¢.) and Ay i €
{0,1}4m(¢¢.) by Definition 1 and A7, . < 0 whenever
Agijyr; s 0, the result follows. O

Lemma. Let A € AD(0?, 2%, .J) then D(¢) < D(¢ + A).
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Proof. Analoguous to the proof of Lemma 1. O

Proof of Theorem 1

Theorem. Algorithm 2 monotonically increasis the dual
lower bound (11).

Proof. We prove that (i) the receiving messages and (ii) the
sending messages step improve (11).

(i) Directly apply Lemma 1. (ii) The difficulty here is that we
compute descent directions from the current dual variables
¢ in parallel and then apply all of them simultaneously. By
Lemma 2, the send message step is non-decreasing when
called for each set Jy, .. ., J; in Algorithm 2. The dual lower
bound L(¢) is concave, hence we apply Jensen’s inequality
and note that wy + ... 4+ w; < 1 to obtain the result. O]

Proof of Theorem 2

Theorem. If 6% is marginally consistent, the dual lower
bound D(¢) cannot be improved by Algorithm 2.

First, we need two technical lemmata.



Lemma 3. Let X C {0,1}", A € {01}
and Ar € {0,1}¥ Vo € X. Let 2* € X
be given and define v* := Ax*. Let A € RK
>0, v*(s)=1

) <0, v*(s)=0

€ argmingcy(—A, Az) and (ii) for z** €
= Ax™** it holds that A(s) =0

be given such that A(s Then

(i) x=*
argmin, . x (=4, Az), v**
whenever v*(s) # v**(s).

Proof. Letx € X and define v = Az. Then

= (—A, Az*) (24)

because (x) > (x * %) due to A(s) > 0 for v*(s) = 1 and
(%) > 0dueto A(s) < 0 for v*(s) = 0. This proves (i) and
(ii) is proven by observing that (xx) = 0 and (x) = (x * %)
must also hold. O

Lemmad. Let z},z}* € argmin, y, (0%, 2;) be two solu-
tions to the i-th factor for the current reparametrization 6.
If Ais admissible w.rt. x then A is also admissible w.r.t.

*ok
Z; .

Proof. As both zf and «af* are

; ; optimal to

0 and z¢ is also optimal to 6¢T4, we have
(A AGaei) < (A, Agaei™). By Lemma 3,
(i) also (—Au ), Agaz) < (=Aug, Aoz

holds, hence equality must hold. This shows
z}* € argmin, ¢y, (0974, z;). Second, Lemma 3, (i) im-
plies that A(s) = 0 whenever v*(s) # v**(s). This proves
>0, v(s)=1

that A(,L’])(S) < O y**(s) _ O

,l/** = A(z,])x;k* O]
Proof of Theorem 2. Tt is sufficient to show that for
marginally consistent #% for S, the update A computed by
Algorithm 1 on an arbitrary factor ¢ € F and some set J C
Nz (7) has the following properties: (i) L(¢) = L(¢ + A),
(ii) 914 is marginally consistent for S. For an easier proof,
we only consider the case J = {j}. The general case can be
proven analoguously.

() Let ] € S;, 2} € S; with A jyzi = A pnzj. We
have to show that

r, €X; IjEXj i, €X; Z]'EX]'

(25)

Due to x; optimal to 9?+A, since by Lemma 4 the
update A is admissible for z, it remains to show
that 25 € argmin, oy (0972, 2;). As z €
argmin, ¢y, (69, x;), it is sufficient to prove that r; €
argminmjex'j(—A(Lj),A(j,i)xj}. This follows from
Lemma 3 (i). We conclude by noting (07, z¥) + (9;’5957) =

(0772, 27) + (072 ay).

(2

(i) The computations in (i) show that
S; - argmin, ¢ y, 0972 ;) and S; -
argmin, (Q?JFA,Q:]'). The reparametrizations of

all other factors stay the same: Gl‘erA = H,f for k € F\{4,}.
Hence, 674 is marginally consistent for S after the
update. [

9. Special Cases: Graphical Model Solvers

We will show how Algorithm 2 subsumes known
message-passing algorithms MSD [74], TRWS [48],
SRMP [49] and MPLP [28] for MAP-inference with com-
mon graphical models, considered in Example 1.

Solver Primitives (13) and (15). As it can
be seen, all factors in (5) are of the form
X; ={(@1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}
and conv(X;) = {p > 0 : (1,u) = 1} is a dim( X;)-
dimensional simplex.

In all message passing algorithms [48, 49, 74, 28],
there are two types of invokations of Algo-

rithm 1 together with solutions of the accom-
panying optimization problem (13) and (15):
Alg. 1 Factor Reparametrization
input Optimization adjustment (15)
a3)
it=ueV mig {69 (x)}
T = {uv} 2y € Xy
uv € E Az(u,uv)(xu) =
Jmin 0% (x1,)
— 05(zu)
i =uv € E| min{0(zu,20)}
J = {u} (Tu, ) € Xu X Xy
ueV Az(u'u,u) (‘T“) =
. 0% (z'
;LiLiTél}(luU uv (J"”U.U )
—min {buo (T, z0) }

MAP-inference Solvers. In Table 1 we state solvers

MSD [74], TRWS [48], SRMP [49] and MPLP [28 -
min <9?,1‘7>+ min <0;¢,£ZJ]> — min <9;¢>+A’mi>+ min <9]¢7+A T [74], (48], [49] an [28] as spe

cial’cases of our framework. Factors are visited in the order
they are read in.



Current

Algorithm Jreceive JiU. U w
factor W W -
MSD [74] " ev c(u) {uv} C Ng(u) Wiy ... = 1 |Ng(u)|
uv € E 19/ — —
ueV %] — —
MPLP 28] uv € E {u,v} {u}, {v} w1 =12 =wy
forward pass:
TRWS [48] weV Huww:veNg(u),v<u} {uv}:veNgu),v>u wi,... =" max({veNs(u):v>u},{veNs(u)v<u})
SRMP [49] backward pass:
ueV {UU NS NG(U),’U > U} {’U/U} NS NG(U),’U <UuU Wi,...= 1/max({v€NG(u):v>u},{v€/\fc(u):v<u})
uv € E 19/ — —

Table 1. [74, 48, 49, 28] as special cases of Algorithm 2.

Remark 1. We have only treated the case of unary 0,,,u € V
and pairwise potentials 0., uv € E here. MPLP [28] and
SRMP [49] can be applied to higher order potentials as well,
which we do not treat here.SRMP [49] is a generalisation of
TRWS [48] to the higher-order case.

Remark 2. There are convergent message-passing algo-
rithms such that factors comprise trees [72, 65]. Their anal-
ysis is more difficult, hence we omit it here.

Note that our framework generalizes upon [48, 49, 28,
74, 65, 72] in several ways: (i) Our factors need not be
simplices or trees. (ii) Our messages need not be marginal-
ization between unary/pairwise/triplet/. . . factors. (iii) We
can compute message updates on more than one coupling
constraint simultaneously, i.e. we may choose J1U...UJ,
in Algorithm 2 to be different than singleton sets. (i) and (ii)
affect LP-modeling, (iii) affects computational efficiency:
By considering multiple messages at once in Procedure 1,
we may be able to make larger updates A*, resulting in faster
convergence.




