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Introduction

In this supplementary material, we provide further ev-
idence that supports the quality of the proposed method.
These additional experiments were produced using the same
version of the approach explained in our main paper and in-
clude the following items:

e More details about the implementation of the pro-
posed MuCaLe-Net approach and released material'
(Sec. A);

e Details about the performances of MuCale-Net com-
pared to its component-networks (Sec. B);

e Performances of MuCaLe-Net according to the size of
the source training-database (Sec. C);

e Performances of MuCaLe-Net on other target-datasets,
especially on the fine-grained categorization task
(Sec. D);

e Visualization of more unique filters (for all the layers)
generated by each component-network of MuCaLe-
Net (Sec. E).

All the figures of this document are best viewed in color.

A. More Implementation Details of the Pro-
posed MuCal.e-Net Approach

In this section, we describe more implementation
details of our approach. Especially, we provide more
details of: (i) the practical categorical-level re-labeling
(Sec. 3.1 of the main paper), (ii) the partitioning protocol
(Sec. 3.1 of the main paper), (iii) the initialization pro-
cess used to get convergence from the VGG-16 network
(used in Sec. 5 of the main paper) and (iv) the descrip-
tion of the target-datasets (used in Sec. 5 or the main paper).

Ihttp://perso.ecp.fr/~tamaazouy/
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Figure 1. Examples of basic, subordinate and superordinate-level
words used by Humans to categorize objects in images.

Hierarchical versus categorical-levels

Before digging into the details of the re-labeling and
partitioning protocols, we give more details about the
definition of categorical-level categories and compare it
to those of hierarchical-level categories. In fact, given a
hierarchy H with “is-a” relations (X = (V, E) consists
of a set V of nodes and directed edges £ C V x V), a
hierarchical-level corresponds to the set of all nodes in
the same level of the hierarchy. Formally, assuming that
none of the hierarchical-level nodes has more than one
direct ancestor (e.g., V(v;) € V, Card(6y(v;)) = 1)*, they
correspond to the nodes that have the same amount of total
ancestors (e.g., V(vi,vj) € V x V, Card({6%,(v;)}32,) =
Card({5%,(v;)}32,). Thus, the definition is mainly based
on the topology of the hierarchy (it contains inconsistent
and imbalanced information if the hierarchy is imperfect,
which is mostly the case in the real-world). In contrast,
a categorical-level is defined by a set of categories from
the same type. For instance, the basic categorical-level
corresponds to the most common words used by Humans to
categorize objects. Subordinate/superordinate categorical-
level corresponds to the words more specific/generic than
those of the basic-level. Thus, the definition of categorical-

254,(+) corresponds to the deductive function introduced in the main
paper, that associates to a category v; of V its direct ancestor.
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Figure 2. [Illustration of the difference between categorical and
hierarchical-level categories on a hierarchy with “is-a” relations.
Nodes in the same horizontal line belongs to the same hierarchical-
level. Colored nodes with the same color belong to the same
categorical-level. Blue nodes belong to the basic-level, gray nodes
to the subordinate and red ones to the superordinate. By definition,
a categorical-level contains the same type of categories (specific
only, basic only, generic only) at a given level while a hierarchical
one may contain different types at a given level. For instance, the
third hierarchical-level contains generic categories (dog, cat, etc.)
and specific ones (cuckoo, etc.).

levels is mainly based on a human-cognition knowledge,
namely categorization words used by Humans to classify
(thus, it contains very relevant and balanced information).
In Figure 1, we show some categorical-level words used by
Humans to categorize objects and in Figure 2, we illustrate
the differences between the definitions of categorical and
hierarchical-levels.

Re-labeling protocol

We first describe the near-zero cost re-labeling protocol of
the categorical-level categories. As mentioned in the main
paper, we used subordinate, basic and superordinate-levels
with the initial training-dataset (ILSVRC) labeled at sub-
ordinate-level (specific such as “rottweiler” or “malinois”).
Our goal is thus to re-label the categories of the training
dataset in general categorical-levels, namely basic (generic
such as “dog” or “bird”) and superordinate-levels (very
generic such as “animal” or “vehicle”). A simple way to
do that is to associate to each subordinate category one of
its images (can be any image of the category, as long as it
contains only the object and that is clearly visible, which
is mostly the case on ImageNet images), show it to the an-
notator and ask him/her to label the image with the most
common word that he/she will use to categorize it gener-
ally (subordinate) or very generally (superordinate). For
instance, for the subordinate category hammerhead, the an-
notator will label it by the basic-level word shark and for the
category weimaraner, it will label it by the word dog. For

Subordinate Basic  Superordinate
convertible - sport car car vehicle
helicopter - fighter plane aircraft vehicle
barber chair - rocking chair ~ chair furniture
malinois - rottweiler dog animal
garfish - puffer - sturgeon fish animal
hammerhead - tiger shark shark animal

Table 1. Example of re-labeling of subordinate categories (left
column) into basic-level ones (middle column) and superordinate
ones (right column).

both subordinate categories, it will re-label it with the word
animal for the re-labeling to superordinate-level. Some
other re-labeling examples are reported in Table 1. If one
wants to have only words of the hierarchy in order to have
homogeneity of the re-labeling between the different anno-
tators, he can constrain the annotators by asking them to
re-label the images with one of the set of words obtained
from the ancestors of the subordinate-category.

Regarding the re-labeling of the whole ILSVRC dataset
(1,000 specific categories) that we used in Sec. 5.3 of the
main paper, we used an already available list [9] of 483
fine-grained categories labeled to 200 basic-level categories
and re-labeled (using the above re-labeling protocol) the
remaining 517 fine-grained categories. Our re-labeling of
the remaining categories results into 280 new basic-level
categories, with a total of 1,000 subordinate categories
re-labeled in 480 basic-level ones. In Sec. 5.2 of the
main paper, we have reported some results of our method
on ILSVRC?® with the three categorical-level label-sets,
including the superordinate-level. To re-label subordinate
categories into superordinate ones, we considered their
re-labeled 200 basic-level categories (obtained from [9]) as
the initial categories and re-label them into superordinate.
This trick aims us to re-label only 200 categories instead
of 483 (subordinate categories of ILSVRC5). This latter,
results in 12 superordinate categories. The whole sets of
basic-level categories, superordinate ones and their relation
to the subordinate categories will be made available at
http://perso.ecp.fr/~tamaazouy/.

Partitioning protocol

Here, we detail how we automatically get the partitioning
of the set C into GG subsets (such that C = Uszl Ci), as
described in Sec. 3.1 of the main paper. Once the categories
of the generic categorical-level (basic or superordinate)
are given, it is straightforward to partition the set C into
G subsets. In fact, let consider the following set of subor-
dinate categories: C = {convertible, landrover, malinois,
rottweiler} and the set of their re-labeling categories {car,
car, dog, dog }, our method groups specific categories con-
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Method airp. bike bird boat bottle bus car cat chair cow table dog horse

Net-S 84.3 77.4 829 804 336 643 841 821 534 570 588 812 821

Net-G 82.1 79.2 8.5 775 332 610 846 826 549 527 615 802 829

MuCaLe-Net  84.6 80.3 865 805 366 651 856 845 564 591 630 834 845
mbike person plant sheep sofa train TV mAP

Net-S 75.8 922 480 729 547 754 662 703

Net-G 74.5 920 489 699 591 711 663 70.0

MuCale-Net  76.9 93.0 506 744 604 772 68.6 725

Table 2. Detailed performance of MuCaLe-Net and its component-networks (Net-S and Net-G) on the 20 categories of the target-dataset

Pascal VOC 2007. The networks are based on the AlexNet architecture and trained on the ILSVRC®-® database (half a million images).

Method airp. bike bird  boat bottle bus car cat chair cow table dog horse

Net-S 91.6 833 877 849 401 718 879 855 61.1 654 733 823 851

Net-G 92.2 828 887 847 419 728 881 852 608 592 71.7 829 845

MuCaLe-Net  93.1 845 895 859 429 742 887 873 625 653 741 84.6 864
mbike person plant sheep sofa train TV mAP

Net-S 77.6 935 515 759 617 90.7 70.8 76.1

Net-G 78.9 935 537 707 61.8 904 70.6 758

MuCaLe-Net  79.7 940 548 754 632 916 723 775

Table 3. Detailed performance of MuCaLe-Net and its component-networks (Net-S and Net-G) on the 20 categories of the target-dataset
Pascal VOC 2007. The networks are based on the AlexNet architecture and trained on the whole ILSVRC database (1.2 million images).

vertible and landrover to car and malinois and rottweiler
to dog, which results in a set of two subsets (thus, G = 2)
of generic categories with £ = {car,dog}. It is important
to note that, the partitioning is directly based on the set £
of re-labeled categories, thus G = Card(L). From this
example, we have a ratio of two specific categories per
generic category but in the real-world with real-datasets,
the ratio is much higher. Hence, all the images of the
specific categories are re-labeled to the generic categories,
resulting to subordinate categories that may contain much
less images than basic-level or superordinate ones. For
instance, as in Figure 2 the basic-level category bird
contains as much images as the amount of images in the
ensemble of its subsumed subordinate categories.

Initialization process of VGG

Regarding the initialization process used to get convergence
from VGG-16 in Sec. 5 of the main paper, we used the
weights of a diversified pre-trained network. It is impor-
tant to note that the initialization process used here is only
to solve the technical problem highlighted in the original
paper [10] (i.e, it is hard to get convergence with any ran-
dom initialization strategy). In fact, to solve this problem,
they used a process hard to re-implement in practice thus,
we just used the weights of a pre-trained model. More
specifically, we used those of the model pre-trained on the
ILSVRC dataset and those of one that we have fine-tuned
(from this latter) on a diversified set of 4,000 categories of
ImageNet. Across the experiments, we found that both ini-

tialization perform almost equally. For instance, if we ini-
tialize MuCaLe-Net with the weights of the model trained
on the 1,000 categories of ILSVRC, we get transferability
performance of 91.5 on Caltech-101 dataset and if we use
those of the one trained on the diversified categories, we get
92.0. This is slightly higher, however with the same ini-
tialization as [10], MuCaLe-Net still improves their perfor-
mances by 2.7 points of accuracy (91.5 versus 88.8). All
component-networks of the proposed MuCaLe-Net (e.g.,
Net-S and Net-(), both trained with AlexNet and VGG-
16 will be made available at http://perso.ecp.fr/
~tamaazouy/.

Target-Datasets

In this section, we describe with details, the target-datasets
used in section 5. of the main paper the main paper.
More precisely, we used five popular datasets. Pascal VOC
2007 [2] and VOC 2012 [3] are multi-object datasets, that
contain 9,963 and 22, 531 images respectively, labeled by
one or several labels from 20 categories. They are divided
into train, val and test subsets. We conduct our experi-
ments on the trainval/test splits (5, 011/4, 952 for VOC 2007
and 11,540/10,991 for VOC 2012). Caltech-101 [4] and
Caltech-256 [5] are mono-object datasets where images are
labeled by one of 102 categories for the former and 257 for
the latter. We used popular splits of the literature: 30/60 im-
ages per-class for training (3,060/15, 420 in total) and the
rest for testing (total: 3,022/15,187) in Caltech-101/256,
respectively. Nus-Wide Object [1], is a subset of Nus-Wide
and thus a multi-object benchmark. It contains 36, 255 im-
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Method VOC07 CA101 NWO
mAP  Accuracy mAP
Net-S 70.3 79.6 51.2
Net-G 70.0 79.4 51.0
MuCalLe-Net 72.5 82.6 54.1
Net-S 76.1 87.8 62.2
Net-G 75.0 87.2 61.5
MuCalLe-Net 71.5 89.4 64.4

Table 4. Overall performance of MuCaLe-Net and its component-
networks (Net-S and Net-G) on three target-datasets (VOC 2007,
Caltech-101 and Nus Wide Object). All the networks are based
on the AlexNet architecture. On the top of the table we report the
results for the networks trained on the ILSVRC?-® database (half
a million images) and on the bottom, the results for the networks
trained on the whole ILSVRC database (1.2 million images).

ages divided into 21, 709 for training and 15, 546 for testing.
Each one is labeled among 31 categories.

B. MuCal.e-Net Compared to its Component-
Networks

In this section, we provide more details about the results
of the proposed MuCaLe-Net. More specifically, we com-
pare its performances with each of its component-networks,
namely Net-S (trained on subordinate-level categories) and
Net-G (trained on basic-level categories).

The comparison is carried out according to a transfer-
learning scheme, for which we use three target-datasets
(VOC 2007 (VOCQ7), Caltech-101 (CA101) and Nus-Wide
Object (NWO). The overall performances of MuCaLe-Net
and its component-networks (trained on ILSVRC%% or on
the whole ILSVRC database) are presented in Table 4. The
first salient observation is that the performances of Net-G
are below those of Net-S for all the datasets. One could say
that, since the target-datasets contains generic categories,
Net-G would work better than Net-.S, but in practice it is not
the case and this is certainly due to the fact that Net-S has
been trained with more supervision (the training-images are
labeled among a set of low intra-class and high inter-class
clusters) than Net-G (the training-images are labeled among
high intra-class and low inter-class clusters). As shown in
the main paper, the performances of MuCaLe-Net are al-
ways above those of its two components, regardless the size
of the training-database. This latter, clearly highlights that
the improvement does not come from each of the compo-
nents but from their well-done combination.

In all the experimentation, we always show the over-
all performances of the methods, without focusing on the
per-category performance which can be interesting. Hence,
we report the detailed performances (Average Precision
on each category) of MuCaLe-Net and its component-
networks on the Pascal VOC 2007 dataset on Table 2 for

networks trained on the ILSVRC®® database and Table 3
for networks trained on the whole ILSVRC database. The
main observation of this experiment is that, as for the
overall performance, MuCaLe-Net always outperforms its
component-networks. An exception is for the cow category
that is slightly more recognizable by Net-S (65.4 versus
65.3). In contrast to the overall performance, Net-G per-
forms slightly better than Net-S on a few categories. This
means that high supervision is not always better for all the
categories. However, for the whole set of categories, Net-G
generally performs lower than Net-S, highlighting the suffi-
ciency to only look at the overall performances to compare
the methods.

C. Effect of the Training-Database Size

In this section, we evaluate the effect of the training-
database size on the performances of the proposed
MuCalLe-Net strategy and compare it to the Standard CNN
strategy. The size of a database can be represented by three
aspects: (i) the total number of images, (ii) the total number
of categories and (iii) the number of images-per-class for
each class. In this experiment, we only variate the two first
aspects (total number of images and categories) and neglect
the third one since it has been shown in [12] that the per-
formances does not increase with roughly more than 1, 200
images-per-class, which is already the amount of images-
per-class in the training-databases we use. We thus take
the whole ILSVRC database containing around 1.2 mil-
lion images labeled among 1,000 categories and extract
two subsets: (i) ILSVRC® containing around 500,000
images labeled among 483 categories and (ii) ILSVRC?'6
containing around 600, 000 images labeled among 583 cat-
egories. From each database, we learn one network fol-
lowing the standard CNN learning-strategy (namely “Stan-
dard”) and one following the proposed learning-strategy
(namely ‘“MuCale-Net”). The two methods are evalu-
ated in a transfer-learning scheme on the Pascal VOC 2007
dataset and the results are reported on Table 5.

As expected, the larger training-database we use, the
better the methods perform on the target-datasets. More
interestingly, the proposed MuCaLe-Net learning-strategy
performs always better (for the three database-sizes) than
the standard CNN learning-strategy, meaning that our tech-
nique is highly robust with regard to the size and the nature
of the training-database.

D. Transfer-Learning on Fine-Grained Image
Classification Task

In the main paper, we showed that the proposed
MuCale-Net approach has a good diversification ability,
that is useful on a transfer-learning task since it generates
a more universal image representation. However, for rea-



VOC07 CA101

#I Meth
mages ethod MAP Acc.
5% 10° Standard 70.3 79.6
MuCale-Net 72.5 82.6
Standard 71.4 82.0

1 5

0x10"  \uCaLeNet  73.0 841
125106 Standard 76.1 87.8

MuCale-Net 77.5 89.4

Table 5. Overall performance of the standard CNN learning-
strategy compared to the proposed MuCaLe-Net on two target-
datasets (Pascal VOC 2007 and Caltech-101) trained using the
AlexNet architecture with different size of the source training-
database. Note that, the three training-databases not only differs
by their number of images but also by their nature since they con-
tain images labeled among different set of specific categories.

CUB-200 Stanford-Cars

Method

Accuracy Accuracy
Standard [10] 60.4 37.6
Standard+Flip [8] 61.0 36.5
Standard+Bbox [8] 65.3 n/a
MuCaLe-Net%5 (ours) 71.0 46.4
MuCale-Net (ours) 71.5 47.1

Table 6. Overall performance of MuCalLe-Net compared to the
standard learning-strategy in order to show that MuCaLe-Net also
generates a more universal image representation for the hard fine-
grained categorization target-task. We also compare it to base-
lines reported in [8], namely “Standard+Flip” (containing flipped
images at train and test phases) and “Standard+Bbox” (contain-
ing bounding-box annotations at training and testing phases) on
two fine-grained classification datasets (CUB-200 and Stanford-
Cars). All the networks are based on the VGG-16 architecture and
are trained on the whole ILSVRC, except MuCaLe-Net"-® that has
been trained on the ILSVRC®-® database.

sons of space and clarity, we only conduct transfer-learning
on “classical” image classification benchmarks, that usually
contain quite generic classes. In this section we show that
the proposed strategy is also useful on datasets containing
images labeled among fine-grained categories.

For this, we tested the method on two widely-used fine-
grained datasets, namely Caltech-UCSD2011 [11] (denoted
as CUB-200) and Stanford-Cars [6]. The former contains
200 bird categories and each has around 30 training images.
The latter contains a total of 8, 144 images labeled among
196 car categories, resulting to roughly 40 training images
per class. In any case, both datasets contains few training-
data per category, which makes sense to deal with it on a
transfer-learning scheme.

In this experiment, the goal is to show that the proposed
MuCalLe-Net strategy still generates, even on hard fine-
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Figure 3. Illustration of pairs of convolutional-filters with a high
similarity score. Top part contains the representation of filters
(through the top-four image-patches that highly activate them)
from conv1 and the bottom part, those from conv2. In each part,
there are two blocks: one for the filters from Net-S (left) and one
for those from Net-G (right). For each network (each block), we
show its filters on top, the most similar ones from the other net-
work on the bottom and their correlation score. We clearly see
that filters that are visually-similar have a high correlation score,
meaning that the “correlation” is a good similarity-metric to com-
pare convolutional-filters.

grained target-datasets, a more universal image represen-
tation (more performing on the target-datasets) compared
to the one generated by the standard CNN-learning strat-
egy. For the sake of fair comparison, we evaluate with the
same settings as the baselines of [8], that is to say, we use
pre-trained models based on the VGG-16 architecture, for
the target-dataset images, we extract the penultimate fully-
connected layer (fc7) of each network of the methods and
learn each class with a one-vs-all SVM classifier. Note that
the standard strategy corresponding to train on specific cat-
egories with the pre-trained VGG-16 model [10] has also
been implemented by [8], thus we also report the scores
they report on their paper for two datasets. A slight dif-
ference with our implementation is their augmentation of
the training and testing target-data by flipping the images,
resulting to a slight improvement of performance. We thus
denote their baseline as Standard+ Flip. They also report for
the CUB-200 dataset, the results when bounding-box anno-
tations are provided at train and test phases (we denote it as
Standard+Bbox), thus we report this result too. The results
are presented in Table 6.

From the results, we observe that the proposed MuCalLe-
Net is better than all the baselines and more importantly,
better than the standard learning-strategy with an im-
provement of 11.1 points on CUB-200 and 8.8 points on
Stanford-Cars. Surprisingly, our method works much bet-
ter on specific tasks than on generic ones (presented on the
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Figure 4. Visualization of unique filters generated by Net-S (left) and Net-G (right) for the five convolutional-layers of the AlexNet
architecture. In each of the five blocks we represent on the top part, the filters (through the top-four image-patches that highly activate
them) from one network (Net-S on the left and Net-G on the right) on one convolutional-layer and on the bottom part, their closest filters
from the other network. Between those filters, we indicate their correlation score. Simply said, in each block (convolutional-layer), the
three filters on the top-left and the three on the bottom-right belongs to Net-S and the three filters on the bottom-left and the three on the
top-right belongs to Net-G.



main paper), highlighting a high potential on this task. Ob-
viously the performances of the fine-grained methods of the
literature are much higher than those we report here. How-
ever, here we do not use the well-known techniques to con-
siderably boost the performances, especially fine-tuning the
initial models on these target-datasets and using fine-tuned
part-detectors to detect and represent the localized parts. In
fact, the goal here is only to show that, on a transfer-learning
scheme, even on the harder fine-grained target-task, the pro-
posed MuCal e-Net strategy has a considerable diversifica-
tion ability (generates more universal image representation)
compared to the standard learning-strategy.

E. Visualization of Unique Filters Generated
by Component-Networks of MuCalLe-Net

As mentioned in the main paper, we show more visual-
izations of the unique filters generated by each component-
network of the proposed MuCaLe-Net strategy. More
precisely, we first show some correlation values between
visually-similar filters to highlight the efficiency of the use
of the “correlation” metric to compare convolutional-filters,
then we show more unique filters generated by Net-S and
Net-G on all the convolutional-layers.

In order to assert that the difference highlighted by the
two networks is not due to a bad similarity-metric (here
we used the “correlation” metric as in [7]), it is crucial
to show that when filters are visually similar, the metric
outputs a high score (here the maximum absolute value is
1). Thus, we took the two pre-trained categorical-level net-
works (Net-S and Net-G) and show the patches that highly
activate some of the most similar convolutional-filters be-
tween the two networks (in term of correlation-metric).
These similar filters are presented in Figure 3. We only
show the filters from convl and conv2 since, as demon-
strated in the submitted paper, above conwv2-layer the fil-
ters are not very similar, thus it does not make sense to
show them here. From the results, we clearly observe that
when the output value of the similarity-metric is high, the
filters are highly visually-similar. In conv2, the range of the
correlation-scores is slightly below the range of values in
convl, but it is still relatively high. In fact, we see that some
structure-like (water, dotted, green-point, etc.) filters are
very visually-similar as predicted by the correlation-metric.
This experiment shows that the correlation-metric is highly
suitable to compare convolutional-filters.

Now that we have shown the suitability of the metric we
use, we show more visualizations of unique filters gener-
ated by Net-S and Net-G. In fact, in Section 4.1 of the
main paper, we have shown visualizations of some unique
filters from convb, here we show more visualizations and
especially for all the convolutional-layers. Figure 4 reports
all these new visualizations of unique filters that highlights
the five following main points:

e the more we go deeper, the more the filters represent
abstract object-parts;

o the two networks (Net-S and Net-G) generate very dif-
ferent filters;

e the more we go deeper, the more correlation-scores of
the most similar filters are low. This clearly means that
the more we go deeper, the more the filters generated
by one network are far from those generated by the
other network;

o the filters generated by Net-S are very specific at the
deeper layers (conv4 and convS5), for instance it con-
tains very specific breed of dogs, very specific breed
of rodent, very specific breed of birds;

o the filters generated by Net-G are very generic at the
deeper layers, for instance it contains different breed
of dogs, different breed of birds and different kind of
fruits.

The first point confirms what is already known [12, 13]
and the others confirm what has been highlighted in Sec.
4 of our main paper. To resume, these visualizations show
that the similarity-metric we used is well suited to compare
convolutional-filters. Above all, it clearly confirms, qualita-
tively, the diversification ability of the proposed MuCale-
Net learning-strategy, that is to say, its ability to generate
more relevant filters from the same training images.
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