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In the supplementary material we present details of our SGM stereo and flow implementations (used in Sec. 4.1 and
Sec. 4.5) as well as the segmentation ground prior (used in Sec. 4.7) that were omitted from the main paper due to the limit
on page length. We also discuss parameter settings and their effects on our method. Note that we review the SGM algorithm
as proposed by Hirschmuller [3], but describe the algorithm using our own notation to be consistent with the main paper. We
also provide additional qualitative results and comparisons with state-of-the-art methods in the supplementary video.

A. SGM Stereo

In the binocular and epipolar stereo stages (Sec. 4.1 and 4.3), we solve stereo matching problems using the semi-global
matching (SGM) algorithm [3]. Here, stereo matching is cast as a discrete labeling problem, where we estimate the disparity
map Dp = D(p) : Ω → D (where D = {Dmin, · · · , Dmax} is the disparity range) that minimizes the following 2D Markov
random field (MRF) based energy function.

Estereo(D) =
∑
p∈Ω

Cp(Dp) +
∑

(p,q)∈N

cVpq(Dp,Dq). (A1)

Here, Cp(Dp) is the unary data term that evaluates photo-consistencies between the pixel p in the left image I0 and its
corresponding pixel p′ = p − (Dp, 0)T at the disparity Dp in the right image I1. Vpq(Dp,Dq) is the pairwise smoothness
term defined for neighboring pixel pairs (p,q) ∈ N on the 8-connected pixel grid. In SGM, this term is usually defined as

Vpq(Dp,Dq) =


0 if Dp = Dq

P1 if |Dp −Dq| = 1

P2 otherwise
. (A2)

Here, P1 and P2 (0 < P1 < P2) are smoothness penalties. The coefficient c in Eq. (A1) is described later.

While the exact inference of Eq. (A1) is NP-hard, SGM decomposes the 2D MRF into many 1D MRFs along 8 cardinal
directions r and minimizes them using dynamic programming [3]. This is done by recursively updating the following cost
arrays Lr(p, d) along 1D scan lines in the directions r from the image boundary pixels.

Lr(p, d) = Cp(d) + min
d′∈D

[Lr(p− r, d′) + Vpq(d, d′)]− min
d′∈D

Lr(p− r, d′). (A3)

Here, by introducing the following normalized scan-line costs

L̄r(p, d) = Lr(p, d)− min
d′∈D

Lr(p, d
′), (A4)



the updating rule of Eq. (A3) is simplified as follows.

Lr(p, d) = Cp(d) + min
d′∈D

[
L̄r(p− r, d′) + Vpq(d, d′)

]
(A5)

= Cp(d) + min{L̄r(p− r, d), L̄r(p− r, d− 1) + P1, L̄r(p− r, d+ 1) + P1, P2} (A6)

Then, the scan-line costs by the 8 directions are aggregated as

S(p, d) =
∑
r

Lr(p, d), (A7)

from which the disparity estimate at each pixel p is retrieved as

Dp = argmin
d∈D

S(p, d). (A8)

Recently, Drory et al. [2] showed that the SGM algorithm is a variant of message passing algorithms such as belief propaga-
tion and TRW-T [9] that approximately optimize Eq. (A1). Here, the coefficient c in Eq. (A1) is a scaling factor that accounts
for an overweighting effect on the data term during SGM (c = 1/8 when using 8 directions) [2].

Drory et al. [2] also proposed an uncertainty measure U that is computed as

U(p) = min
d

∑
r

Lr(p, d)−
∑
r

min
d
Lr(p, d). (A9)

U(p) is lower-bounded by 0, and becomes 0 when minimizers of 8 individual scan-line costs agree. Since the first and second
term in Eq. (A9) are respectively computed in Eqs. (A8) and (A3), the computation of U(p) essentially does not require
computational overhead.

In our implementation of SGM, we use the data term Cp(Dp) defined using truncated normalized cross-correlation in
Eq. (5) in the main paper. The smoothness penalties P1 and P2 are defined as follows.

P1 = λsgm/|p− q| (A10)

P2 = P1

(
β + γwcol

pq

)
(A11)

Here, wcol
pq is the color edge-based weight used in Eq. (15) and we use parameters of (λsgm, β, γ) = (200/255, 2, 2). The

disparity range is fixed as {Dmin, · · · , Dmax} = {0, · · · , 255} for the original image size of KITTI (since we downscale the
images by a factor of 0.65, the disparity range is also downscaled accordingly). We also set the confidence threshold τu for
the uncertainty map U to 2000 by visually inspecting U(p).

B. SGM Flow

We have extended the SGM algorithm for our optical flow problem in Sec. 4.5. Here, we estimate the flow map Fp =

F(p) : Ω→ R (where R = ([umin, umax]× [vmin, vmax]) is the 2D flow range) by minimizing the following 2D MRF energy.

Eflow(F) =
∑
p∈Ω

C ′p(Fp) +
∑

(p,q)∈N

cV ′pq(Fp,Fq). (A12)



Similarly to SGM stereo, we use the NCC-based matching cost of Eq. (5) for the data term C ′p(Fp) to evaluate matching
photo-consistencies between I0

t and I0
t+1. We also define the smoothness term as

V ′pq(Fp,Fq) =


0 if Fp = Fq

P1 if 0 < ‖Fp −Fq‖ ≤
√

2

P2 otherwise
. (A13)

Since we use integer flow labels, the second condition in Eq. (A13) is equivalent to saying that the components of the 2D
vectors Fq = (uq, vq) and Fp = (up, vp) can at-most differ by 1. We use the same smoothness penalties {P1, P2} and the
parameter settings with SGM stereo.

The optimization of Eq. (A12) is essentially the same with SGM stereo, but the implementation of updating scan-line
costs in Eq. (A3) was extended to handle the new definition of the pairwise term V ′pq. Therefore, Eq. (A6) is modified using
a flow label u = (u, v) ∈ R as follows.

Lr(p,u) = Cp(u) + min{L̄r(p− r,u), L̄r(p− r,u + ∆±1) + P1, P2} (A14)

Here, (u + ∆±1) is enumeration of 8 labels neighboring to u in the 2D flow space.

C. Refinement of Flow Maps

In the optical flow stage of Sec. 4.5, we refine flow maps using consistency check and weighted median filtering. Similar
schemes are commonly employed in stereo and optical flow methods such as [10, 4, 5]. Below we explain these steps.

We first estimate the forward flow map F0 (from I0
t to I0

t+1) by SGM for only the foreground pixels of the initial segmen-
tation S̃ such as shown in Fig. A1 (a). Then, using this flow F0 and the mask S̃, we compute a mask in the next image I0

t+1

and estimate the backward flow map F1 (from I0
t+1 to I0

t ) for those foreground pixels. This produces a flow map such as
shown in Fig. A1 (b). We filter out outliers in F0 using bi-directional consistency check between F0 and F1 to obtain a flow
map with holes (Fig. A1 (c)), whose background is further filled by the rigid flow Frig (see Fig. A1 (d)). Finally, weighted
median filtering is applied for the hole pixels followed by median filtering for all foreground pixels to obtain the non-rigid
flow estimate such as shown in Fig. A1 (e).

At the final weighted median filtering step, the filter kernel ωgeo
pq = e−dpq/κgeo is computed using geodesic distance dpq on

(a) Forward flow map (b) Backward flow map (c) Consistency check

(d) Background filling (e) Weighted median filtering (f) Disparity map as guidance image
Figure A1. Process of flow map refinement.
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Figure A2. Profiles of scene flow accuracies with reference to parameters τncc (left) and λcol (right). The error rates are evaluated on 200
training sequences from KITTI. The scores with the default parameter settings are colored by red.

the disparity map D (Fig. A1 (f)) as the guidance image. For this, we define the distance between two adjacent pixels as

dist(p1,p2) = |D(p1)−D(p2)|+ ‖p1 − p2‖/100. (A15)

The geodesic distance dpq is then computed for the pixels in the filter window q ∈ Wp as the cumulative shortest-path
distance from q to the center pixel p. This is efficiently computed using an approximate algorithm [8]. We use the filter
window Wp of 31× 31 size and κgeo = 2. The subsequent (constant-weight) median filtering further reduces outliers [7], for
which we use the window of 5× 5 size.

D. Segmentation Ground Prior

The segmentation ground prior term mentioned in Sec. 4.7 is computed as follows. First, we detect the ground plane from
the disparity map D(p). We use RANSAC to fit a disparity plane [d = au + bv + c] defined on the 2D image coordinates.
Here, we assume that the cameras in the stereo rig are upright. Therefore, during RANSAC we choose disparity planes whose
b is positive and high and |a| is relatively small. Then, we compute the disparity residuals between D and the ground plane
as rp = |Dp− (apu + bpv + c)|, where (a, b, c) are the obtained plane parameters. Our ground prior as a cue of background
is then defined as follows.

Cgro
p = λgro

(
min(rp, τgro)/τgro − 1

)
(A16)

When rp = 0, Cgro
p strongly favors background, and when rp increases to τgro, it becomes 0. The thresholding value τp is set

to 0.01×Dmax. We use λgro = 10.

E. Parameter Settings

In this section, we explain our strategy of tuning parameters and also show effects of some parameters. Most of the
parameters can be easily interpreted and tuned, and our method is fairly insensitive to parameter settings.

For example, the effects of the threshold τu for the uncertainty map U (Sec. 4.1), the threshold τw for the patch-variance
weight ωvar

p (Sec. 4.4), and κ3 of the image edge-based weight ωstr
pq (Sec. 4.4) can be easily analyzed by direct visualization

as shown in Figure 3 (b), Figures 4 (b) and (e).
The parameters of SGM (discussed in Sec. A) can be tuned independently from the whole algorithm.
For the weights (λncc, λflo, λcol, λpotts) in Sec. 4.4, we first tuned (λncc, λflo, λpotts) on a small number of sequences. Since

the ranges of the NCC appearance term (Eq. (11)) and flow term (Eq. (12)) are limited to [−1, 1], they are easy to interpret.
Then, we tuned λcol of the color term (Eq. (14)). Here, λpotts/λcol is known to be usually around 10 - 60 from previous
work [6, 1].

Even though we fine-tuned τncc and λcol for Sintel, they are insensitive on KITTI image sequences. We show the effects
of these two parameters for KITTI training sequences in Figure A2. The threshold τncc for NCC-based matching costs was
adjusted for Sintel because its synthesized images have lesser image noise compared to real images of KITTI. Also, the



weight λcol was adjusted for Sintel, to increase the weight on the prior color term (Sec. 4.7). For Sintel sequences, sometimes
moving objects stop moving on a few frames and become stationary momentarily. In such cases, increasing λcol improves
the temporal coherence of the motion segmentation results. In the future we will improve the scheme for online learning
of the prior color models, which will improve temporal consistency of motion segmentation and also will make λcol more
insensitive to settings.
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