
1 Implementation details
Stylization. The StyleNetV2 network is similar to one from (Johnson et al., 2016) with all batch normalization layers
replaced with instance normalization. Three channels of U(0, 1) noise are concatenated to each image beforehand, so
an input tensor has dimensionality Bx6xHxW. The network starts with 512× 512 image and first pads it using reflection
padding to have 592× 592 resolution. The convolutions are not padded and residuals are added to center-cropped image
(to match the spatial dimensions of residuals) resulting in 512×512 output size. The style image is first scaled to 600×600
size before passing through VGG-19 network.

We used the same VGG loss setup as in methods we compare to. We used relu4 2 layer features to compute content
loss and relu1 2, relu2 2, relu3 2, relu4 2 layers for style loss. Content loss weight was fixed to 1 while we
slowly annealed style loss from 0 to 100 and picked the most visually pleasing checkpoint. This way we did not need to
perform a grid search for a good alpha.

We used Torch7 to implement the proposed method. We trained stylization networks for 20000 iterations using Adam
optimizer with learning rate of 0.001 and batch size of 3 to fit in the GPU memory. The training process takes about 4 hours
using NVIDIA TITAN X Maxwell. At run-time, IN approximately as fast as BN, so run-time complexity of StyleNet IN is
approximately the same as StyleNet BN, which, in turn, has the same complexity as the method of (Johnson et al., 2016).

Texture synthesis. The architecture of TextureNetV2 is presented in table 1. We used samples from uniform distribution
z ∼ U(0, 1) as inputs to the generator network. We trained it with Adam optimizer for 5000 iterations starting with
learning rate of 0.001 and lowering it down by a factor of 1.5 every 750 iterations. The batch size was set to 8 and image
size to 256. The training takes no more than half an hour on NVIDIA TITAN X Maxwell.

Dim Layer
0 256 Input
1 256 Linear
2 256 Linear
3 16× 4× 4 Reshape
4 128× 8× 8 FullConvolution 3× 3 + BN + ReLU
5 128× 16× 16 FullConvolution 3× 3 + BN + ReLU
6 128× 32× 32 FullConvolution 3× 3 + BN + ReLU
7 64× 64× 64 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU
8 32× 128× 128 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU
9 3× 256× 256 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU

Table 1: TextureNetV2 architecture. The fully-connected layers at the start ensure huge receptive field.

2 Additional examples
More examples are available at the project page https://dmitryulyanov.github.io/texture_nets_v2.

Figure 1: Textures, used for fig. 2.

1

https://dmitryulyanov.github.io/texture_nets_v2

Figure 2: An effect of changing diversity parameter λ. For each texture first three rows show TextureNetV2 results for
λ = 5, 10, 15; row four shows textures generated with TextureNetV1.

2

StyleNet IN, 512px StyleNet BN, 512px StyleNet IN, 256px StyleNet BN, 256px
(Johnson et al., 2016)

Figure 3: We use 512× 512 images to train StyleNet IN and compare to StyleNet BN trained on 512× 512 images to em-
phasize the value of IN (columns one and two, same as in fig. 4 of main paper). This is different to (Ulyanov et al., 2016)
and (Johnson et al., 2016) where 512× 512 resolution was used. We show that IN also helps when 256× 256 resolution
is used (columns three and four). Methods of (Ulyanov et al., 2016) and (Johnson et al., 2016) differ only in generator
structure and produce similar results. For that reason we compare only with (Johnson et al.., 2016).

3

(a) Content. (b) Ulyanov et al., BN (c) Johnson et al., BN

(d) Style. (e) Ulyanov et al., IN (f) Johnson et al., IN.

Figure 4: Qualitative comparison of generators proposed in (Ulyanov et al., 2016) and (Johnson et al., 2016) with batch
normalization (BN) and instance normalization (IN). Both architectures benefit from instance normalization.

4

(a) Content. (b) Style.

(c) Image size 512× 512. (d) Image size 1080× 1080.

Figure 5: Processing a content image with StyleNet IN at different resolutions: 512 (c) and 1080 (d).

Figure 6: Content images for next four figures.

5

Figure 7: StyleNet IN astylization examples, part 1. The content images are given in fig. 6. Style images are shown in the
first row. 6

Figure 8: StyleNet IN astylization examples, part 2. The content images are given in fig. 6. Style images are shown in the
first row. 7

Figure 9: Style (left column) and three stylizations obtained with StyleNet IN trained with diversity loss.

8

