Deep Hashing Network for Unsupervised Domain Adaptation
Supplementary Material

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, Sethuraman Panchanathan
Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA
{hemanthv, jeusebio, shayok.chakraborty, panch}@asu.edu

1. Loss Function Derivative

In this section we outline the derivative of Equation 8 for the backpropagation algorithm;

$$\min_{\mathcal{U}} J = \mathcal{L}(u_s) + \gamma \mathcal{M}(u_s, u_t) + \eta \mathcal{H}(u_s, u_t),$$

(8)

where, $\mathcal{U} := \{u_s \cup u_t\}$ and (γ, η) control the importance of domain adaptation (1) and target entropy loss (7) respectively. In the following subsections, we outline the derivative of the individual terms w.r.t. the input u.

1.1. Derivative for MK-MMD

$$\mathcal{M}(u_s, u_t) = \sum_{i \in \mathcal{X}} d_k^2(u_s^i, u_t^i),$$

(1)

$$d_k^2(u_s^i, u_t^i) = \left|\left| \mathbb{E}[\phi(u_s^{i,l})] - \mathbb{E}[\phi(u_t^{i,l})] \right|\right|^2_{\mathcal{H}_k}.$$

(2)

We implement the linear MK-MMD loss according to [1]. For this derivation, we consider the loss at just one layer. The derivative for the MK-MMD loss at every other layer can be derived in a similar manner. The output of i^{th} source data point at layer l is represented as u_s, and the output of the i^{th} target data point is represented as v_t. For ease of representation, we drop the superscripts for the source (s), the target (t) and the layer (l). Unlike the conventional MMD loss which is $O(n^2)$, the MK-MMD loss outlined in [1] is $O(n)$ and can be estimated online (does not require all the data). The loss is calculated over every batch of data points during the back-propagation. Let n be the number of source data points $\mathcal{U} := \{u_s\}^{n}_{i=1}$ and the number of target data points $\mathcal{V} := \{v_t\}^{n}_{i=1}$ in the batch. We assume equal number of source and target data points in a batch and that n is even. The MK-MMD is defined over a set of 4 data points $w_i = [u_{2i-1}, u_{2i}, v_{2i-1}, v_{2i}], \forall i \in \{1, 2, \ldots, n/2\}$. The MK-MMD is given by,

$$\mathcal{M}(u, v) = \sum_{m=1}^{\kappa} \beta_m \frac{1}{n/2} \sum_{i=1}^{n/2} h_m(w_i),$$

(9)

where, κ is the number of kernels and $\beta_m = 1/\kappa$ is the weight for each kernel and,

$$h_m(w_i) = k_m(u_{2i-1}, u_{2i}) + k_m(v_{2i-1}, v_{2i}) - k_m(u_{2i-1}, v_{2i}) - k_m(u_{2i}, v_{2i-1}),$$

(10)

where, $k_m(x, y) = \exp(-\frac{||x-y||^2_2}{\sigma^2_m})$. Re-writing the MK-MMD in terms of the kernels, we have,

$$\mathcal{M}(u, v) = \frac{2}{n\kappa} \sum_{m=1}^{\kappa} \sum_{i=1}^{n/2} \left[k_m(u_{2i-1}, u_{2i}) + k_m(v_{2i-1}, v_{2i}) - k_m(u_{2i-1}, v_{2i}) - k_m(u_{2i}, v_{2i-1}) \right],$$

(11)
We now outline the derivative of 11 w.r.t. source output u_q and target output v_q. The derivative is,

$$
\frac{\partial M}{\partial u_q} = \frac{2}{nk} \sum_{m=1}^{n/2} \sum_{i=1}^{n/2} \left[\frac{2}{\sigma_m} k_m(u_{2i-1}, u_{2i}).(u_{2i-1} - u_{2i}).(I\{q = 2i\} - I\{q = 2i - 1\}) \right. \\
+ \left. \frac{2}{\sigma_m} k_m(u_{2i-1}, v_{2i}).(v_{2i-1} - v_{2i}).I\{q = 2i\} - I\{q = 2i - 1\}) \right],
$$

(12)

where, $I\{\cdot\}$ is the indicator function which is 1 if the condition is true, else it is false. The derivative w.r.t. the target data output v_q is,

$$
\frac{\partial M}{\partial v_q} = \frac{2}{nk} \sum_{m=1}^{n/2} \sum_{i=1}^{n/2} \left[\frac{2}{\sigma_m} k_m(v_{2i-1}, v_{2i}).(v_{2i-1} - v_{2i}).(I\{q = 2i\} - I\{q = 2i - 1\}) \right. \\
- \left. \frac{2}{\sigma_m} k_m(u_{2i-1}, v_{2i}).(u_{2i-1} - v_{2i}).I\{q = 2i\} - I\{q = 2i - 1\}) \right],
$$

(13)

1.2. Derivative for Supervised Hash Loss

The supervised hash loss is given by,

$$
\min_{u_s} L(u_s) = -\sum_{s_{ij} \in S} \left(s_{ij} u_i^\top u_j - \log(1 + \exp(u_i^\top u_j)) \right) \\
+ \frac{n_s}{2} \sum_{i=1}^{n_s} \|u_i - \text{sgn}(u_i)\|^2_2.
$$

(5)

The partial derivative of 5 w.r.t. source data output u_p is given by,

$$
\frac{\partial L}{\partial u_p} = \sum_{s_{ij} \in S} \left[I\{i = q\} \left(\sigma(u_i^\top u_j) - s_{ij} \right) u_j + I\{j = q\} \left(\sigma(u_i^\top u_j) - s_{ij} \right) u_i \right] + 2(u_q - \text{sgn}(u_q)),
$$

(14)

where, $\sigma(x) = \frac{1}{1 + \exp(-x)}$. We assume $\text{sgn}(\cdot)$ to be a constant and avoid the differentiability issues with $\text{sgn}(\cdot)$ at 0. Since the S is symmetric, we can reduce the derivative to,

$$
\frac{\partial L}{\partial u_q} = \sum_{j=1}^{n_s} \left[2(\sigma(u_q^\top u_j) - s_{qj}) u_j \right] + 2(u_q - \text{sgn}(u_q)).
$$

(15)

1.3. Derivative for Unsupervised Entropy Loss

We outline the derivative of $\frac{\partial H}{\partial t}$ in the following section, where H is defined as,

$$
H(u_s, u_t) = -\frac{1}{n_t} \sum_{i=1}^{n_t} \sum_{j=1}^{C} p_{ij} \log(p_{ij})
$$

(7)

and p_{ij} is the probability of target data output u^t_i belonging to category j, given by

$$
p_{ij} = \frac{\sum_{k=1}^{K} \exp(u_{ij}^t u_k^s)}{\sum_{k=1}^{K} \sum_{l=1}^{C} \exp(u_{ij}^t u_k^s) / u_{ij}^t}
$$

(6)

For ease of representation, we will denote the target output u^t_i as v_i and drop the superscript t. Similarly, we will denote the k^{th} source data point in the j^{th} category u_k^s as u_k^s, by dropping the domain superscript. We define the probability p_{ij} with the news terms as,

$$
p_{ij} = \frac{\sum_{k=1}^{K} \exp(v_i^\top u_k^s)}{\sum_{l=1}^{C} \sum_{k'=1}^{K} \exp(v_i^\top u_k^s) / u_{ij}^t}
$$

(16)
Further, we simplify by replacing $\exp(v_i^T u_k^j)$ with $\exp(i, jk)$. Equation 16 can now be represented as,

$$p_{ij} = \frac{\sum_{k=1}^{K} \exp(i, jk)}{\sum_{i=1}^{C} \sum_{k'=1}^{K} \exp(i, lk')}$$

(17)

We drop the outer summations (along with the -ve sign) and will reintroduce it at a later time. The entropy loss can be re-phrased using $\log(\frac{a}{b}) = \log(a) - \log(b)$ as,

$$\mathcal{H}_{ij} = \frac{\sum_{k=1}^{K} \exp(i, jk)}{\sum_{i=1}^{C} \sum_{k'=1}^{K} \exp(i, lk')} \log\left(\sum_{k=1}^{K} \exp(i, jk) \right)$$

(18)

$$- \frac{\sum_{k=1}^{K} \exp(i, jk)}{\sum_{i=1}^{C} \sum_{k'=1}^{K} \exp(i, lk')} \log\left(\sum_{i=1}^{C} \sum_{k'=1}^{K} \exp(i, lk') \right)$$

(19)

We need to estimate both, $\frac{\partial \mathcal{H}_{ij}}{\partial v_i}$ for the target and $\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i}$ for the source. We refer to ∂u_q^i for a consistent reference to source data. The derivative $\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i}$ for 18 is,

$$\left[\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} \right]_{18} = \frac{v_i}{\sum_{l,k'} \exp(i, lk')} \left[\sum_k I_{k=q}^{j=p} \exp(i, jk) \log\left(\sum_k \exp(i, jk) \right) + \sum_k I_{k=q}^{j=p} \exp(i, jk) - p_{ij} \exp(i, pq) \log\left(\sum_k \exp(i, jk) \right) \right]$$

(20)

where, $I_{\{\cdot\}}$ is an indicator function which is 1 only when both the conditions within are true, else it is 0. The derivative $\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i}$ for 19 is,

$$\left[\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} \right]_{19} = -\frac{v_i}{\sum_{l,k'} \exp(i, lk')} \left[\sum_k I_{k=q}^{j=p} \exp(i, jk) \log\left(\sum_l \exp(i, lk') \right) + p_{ij} \exp(i, pq) \log\left(\sum_l \exp(i, lk') \right) - p_{ij} \exp(i, pq) \log\left(\sum_k \exp(i, jk) \right) \right]$$

(21)

Expressing $\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} = \left[\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} \right]_{18} + \left[\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} \right]_{19}$, and defining $\bar{p}_{ijk} = \exp(i, jk)$ the derivative w.r.t. the source is,

$$\frac{\partial \mathcal{H}_{ij}}{\partial u_q^i} = v_i \left[\sum_k I_{k=q}^{j=p} \bar{p}_{ijk} \log\left(\sum_k \exp(i, jk) \right) - \sum_k I_{k=q}^{j=p} \bar{p}_{ijk} \log\left(\sum_l \exp(i, lk') \right) - p_{ij} \exp(p, jq) \log\left(\sum_k \exp(i, jk) \right) + p_{ij} \exp(p, jq) \log\left(\sum_l \exp(i, lk') \right) + \sum_k I_{k=q}^{j=p} \bar{p}_{ijk} - p_{ij} \bar{p}_{ipq} \right]$$

(22)

$$= v_i \left[\sum_k I_{k=q}^{j=p} \bar{p}_{ijk} \log(p_{ij}) - p_{ij} \bar{p}_{ipq} \log(p_{ij}) + \sum_k I_{k=q}^{j=p} \bar{p}_{ijk} - p_{ij} \bar{p}_{ipq} \right]$$

(23)

$$= v_i \left(\log(p_{ij}) + 1 \right) \left[\sum_k I_{k=q}^{j=p} \bar{p}_{ijk} - p_{ij} \bar{p}_{ipq} \right]$$

(24)

The derivative of \mathcal{H} w.r.t the source output u_q^i is given by,

$$\frac{\partial \mathcal{H}}{\partial u_q^i} = -\frac{1}{n_t} \sum_{t=1}^{n_t} \sum_{j=1}^{C} v_i \left(\log(p_{ij}) + 1 \right) \left[\sum_k I_{k=q}^{j=p} \bar{p}_{ijk} - p_{ij} \bar{p}_{ipq} \right]$$

(25)

We now outline the derivative $\frac{\partial \mathcal{H}}{\partial v_i}$ for 18 as,

$$\left[\frac{\partial \mathcal{H}_{ij}}{\partial v_i} \right]_{18} = \frac{1}{\sum_{l,k'} \exp(i, lk')} \left[\log\left(\sum_k \exp(i, jk) \right) \sum_k \exp(i, jk) u_k^j + \sum_k \exp(i, jk) u_k^j - \sum_{l,k'} \exp(i, lk') \sum_k \exp(i, jk) \log\left(\sum_k \exp(i, jk) \right) \sum_{l,k'} \exp(i, lk') u_k^j \right]$$

(26)
and the derivative $\frac{\partial H_{ij}}{\partial v_i}$ for 19 as,

$$
\frac{\partial H_{ij}}{\partial v_i} = 19 - \sum_{l,k'} \exp(i, l') \left[\log\left(\sum_{l,k'} \exp(i, l') \right) \sum_k \exp(i, jk) u_k^l + \frac{\sum_k \exp(i, jk) \sum_{l',k'} \exp(i, l') \sum_{l,k'} \exp(i, l') u_k^{l'} \sum_{l',k'} \exp(i, l')}{\sum_{l,k'} \exp(i, l') \sum_k \exp(i, jk) \log\left(\sum_{l,k'} \exp(i, l') \right) \sum_{l,k'} \exp(i, l') \sum_{l',k'} \exp(i, l') u_k^{l'}}, \right.

$$

Expressing $\frac{\partial H_{ij}}{\partial v_i} = 18 + \left[\frac{\partial H_{ij}}{\partial v_i} \right] 19$, we get,

$$
\frac{\partial H_{ij}}{\partial v_i} = \frac{1}{\sum_{l,k'} \exp(i, l')} \left[\log\left(\sum_{l,k'} \exp(i, jk) \right) \sum_k \exp(i, jk) u_k^l - \log\left(\sum_{l,k'} \exp(i, l') \right) \sum_k \exp(i, jk) u_k^{l'}

+ \sum_k \exp(i, jk) u_k^l - p_{ij} \sum_{l,k'} \exp(i, l') u_k^{l'}

- p_{ij} \log\left(\sum_{l,k'} \exp(i, jk) \right) \sum_{l,k'} \exp(i, l') u_k^{l'} + p_{ij} \log\left(\sum_{l,k'} \exp(i, l') \right) \sum_{l,k'} \exp(i, l') u_k^{l'}

\sum_{l,k'} \exp(i, jk) u_k^l - p_{ij} \sum_{l,k'} \exp(i, l') u_k^{l'} \right].

$$

The derivative of H w.r.t. target output v_q is given by,

$$
\frac{\partial H}{\partial v_q} = -\frac{1}{n_t} \sum_{j=1}^C \left(\log(p_{qj}) + 1 \right) \left(\sum_k p_{qjk} u_k^l - p_{qj} \sum_{l,k'} \exp(i, l') u_k^{l'} \right).

$$

2. Unsupervised Domain Adaptation: Additional Results

In the main paper we had presented results for unsupervised domain adaptation based object recognition with $d = 64$ bits. Here, we outline the classification results with $d = 16$ (DAH-16) and $d = 128$ (DAH-128) bits for the Office-Home dataset in Table 1. We also present the (DAH-64), DAN and DANN results for comparison. There is an increase in the average recognition accuracy for $d = 128$ bits compared to $d = 64$ bits because of the increased capacity in representation. As expected, $d = 16$ has a lower recognition accuracy.

Table 1: Recognition accuracies (%) for domain adaptation experiments on the Office-Home dataset. {Art (Ar), Clipart (Cl), Product (Pr), Real-World (Rw)}. Ar→Cl implies Ar is source and Cl is target.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Ar→Cl</th>
<th>Ar→Pr</th>
<th>Ar→Rw</th>
<th>Cl→Ar</th>
<th>Cl→Pr</th>
<th>Cl→Rw</th>
<th>Pr→Ar</th>
<th>Pr→Cl</th>
<th>Pr→Rw</th>
<th>Rw→Ar</th>
<th>Rw→Cl</th>
<th>Rw→Pr</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAN</td>
<td>30.66</td>
<td>42.17</td>
<td>54.13</td>
<td>32.83</td>
<td>47.59</td>
<td>49.78</td>
<td>29.07</td>
<td>34.05</td>
<td>56.70</td>
<td>43.58</td>
<td>38.25</td>
<td>62.73</td>
<td>43.46</td>
</tr>
<tr>
<td>DANN</td>
<td>33.33</td>
<td>42.96</td>
<td>54.42</td>
<td>32.26</td>
<td>49.13</td>
<td>49.76</td>
<td>30.49</td>
<td>38.14</td>
<td>56.76</td>
<td>44.71</td>
<td>42.66</td>
<td>64.65</td>
<td>44.94</td>
</tr>
<tr>
<td>DAH-16</td>
<td>23.83</td>
<td>30.32</td>
<td>40.14</td>
<td>25.67</td>
<td>38.79</td>
<td>33.26</td>
<td>20.11</td>
<td>27.72</td>
<td>40.90</td>
<td>32.63</td>
<td>25.54</td>
<td>37.46</td>
<td>31.36</td>
</tr>
<tr>
<td>DAH-64</td>
<td>31.64</td>
<td>40.75</td>
<td>51.73</td>
<td>34.69</td>
<td>51.93</td>
<td>52.79</td>
<td>29.91</td>
<td>39.63</td>
<td>60.71</td>
<td>44.99</td>
<td>45.15</td>
<td>62.54</td>
<td>45.54</td>
</tr>
<tr>
<td>DAH-128</td>
<td>32.58</td>
<td>40.64</td>
<td>52.40</td>
<td>35.72</td>
<td>52.80</td>
<td>52.12</td>
<td>30.94</td>
<td>41.31</td>
<td>59.31</td>
<td>45.65</td>
<td>46.67</td>
<td>64.97</td>
<td>46.26</td>
</tr>
</tbody>
</table>

3. Unsupervised Domain Adaptive Hashing: Additional Results

We provide the unsupervised domain adaptive hashing results for $d = 16$ and $d = 128$ bits in Figures 1 and 2 respectively. In Tables 2 and 3, we outline the corresponding mAP values. The notations are along the lines outlined in the main paper. We observe similar trends for both $d = 16$ and $d = 128$ bits compared to $d = 64$ bits. It is interesting to note that with increase in bit size d, the mAP does not necessarily increase. Table 3 ($d = 64$) has its mAP values lower than those for $d = 64$ (see main paper) for all the hashing methods. This indicates that merely increasing the hash code length does not always improve mAP scores. Also, the mAP values for Real-World for $d = 128$ bits has DAH performing better than SuH. This indicates that in some cases domain adaptation helps in learning a better generalized model.
Table 2: Mean average precision @16 bits. For the NoDA and DAH results, Art is the source domain for Clipart, Product and Real-World and Clipart is the source domain for Art.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>NoDA</th>
<th>ITQ</th>
<th>KMeans</th>
<th>BA</th>
<th>BDNN</th>
<th>DAH</th>
<th>SuH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>0.102</td>
<td>0.147</td>
<td>0.133</td>
<td>0.131</td>
<td>0.151</td>
<td>0.207</td>
<td>0.381</td>
</tr>
<tr>
<td>Clipart</td>
<td>0.110</td>
<td>0.120</td>
<td>0.116</td>
<td>0.123</td>
<td>0.138</td>
<td>0.211</td>
<td>0.412</td>
</tr>
<tr>
<td>Product</td>
<td>0.134</td>
<td>0.253</td>
<td>0.241</td>
<td>0.253</td>
<td>0.313</td>
<td>0.257</td>
<td>0.459</td>
</tr>
<tr>
<td>Real-World</td>
<td>0.193</td>
<td>0.225</td>
<td>0.195</td>
<td>0.216</td>
<td>0.248</td>
<td>0.371</td>
<td>0.400</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.135</td>
<td>0.186</td>
<td>0.171</td>
<td>0.181</td>
<td>0.212</td>
<td>0.262</td>
<td>0.413</td>
</tr>
</tbody>
</table>

Table 3: Mean average precision @128 bits. For the NoDA and DAH results, Art is the source domain for Clipart, Product and Real-World and Clipart is the source domain for Art.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>NoDA</th>
<th>ITQ</th>
<th>KMeans</th>
<th>BA</th>
<th>BDNN</th>
<th>DAH</th>
<th>SuH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>0.154</td>
<td>0.202</td>
<td>0.175</td>
<td>0.148</td>
<td>0.207</td>
<td>0.314</td>
<td>0.444</td>
</tr>
<tr>
<td>Clipart</td>
<td>0.186</td>
<td>0.210</td>
<td>0.196</td>
<td>0.187</td>
<td>0.213</td>
<td>0.350</td>
<td>0.346</td>
</tr>
<tr>
<td>Product</td>
<td>0.279</td>
<td>0.416</td>
<td>0.356</td>
<td>0.336</td>
<td>0.432</td>
<td>0.424</td>
<td>0.792</td>
</tr>
<tr>
<td>Real-World</td>
<td>0.308</td>
<td>0.343</td>
<td>0.289</td>
<td>0.258</td>
<td>0.348</td>
<td>0.544</td>
<td>0.458</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.232</td>
<td>0.293</td>
<td>0.254</td>
<td>0.232</td>
<td>0.300</td>
<td>0.408</td>
<td>0.510</td>
</tr>
</tbody>
</table>

Figure 1: Precision-Recall curves @16 bits for the Office-Home dataset. Comparison of hashing without domain adaptation (NoDA), shallow unsupervised hashing (ITQ, KMeans), state-of-the-art deep unsupervised hashing (BA, BDNN), unsupervised domain adaptive hashing (DAH) and supervised hashing (SuH). Best viewed in color.

Figure 2: Precision-Recall curves @128 bits for the Office-Home dataset. Comparison of hashing without domain adaptation (NoDA), shallow unsupervised hashing (ITQ, KMeans), state-of-the-art deep unsupervised hashing (BA, BDNN), unsupervised domain adaptive hashing (DAH) and supervised hashing (SuH). Best viewed in color.

References