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1. Additional results
1.1. Additional qualitative results

An expanded version of the VOC 2012 result figure is
shown in Fig. 1.

2. Derivations
2.1. Probabilistic justification of loss

In Sec. 2.1, it is claimed that Eq. 2 follows from
marginalizing Eq. 1 over the unobserved labels, given cer-
tain assumptions. This is proved here.

Marginalizing the objective in Eq. 1 over y is expressed
as: ∑

ỹ,B̃

Py,B|ŷ,I(ỹ, B̃)
∑
x∈X

H(δỹ(x) , Qθ,I(x)). (1)

Using the conditional independence assumptions and the
assumption that B is a deterministic function of I yields∑

ỹ

Py|ŷ,BI
(ỹ)

∑
x∈X

H(δỹ(x) , Qθ,I(x)), (2)

where BI denotes the boundaries as a function of I . As-
suming that y(x) and y(x′) are conditionally independent
given ŷ, B, ∀x 6= x′ ∈ X allows us to represent Py|ŷ,BI

as
a product of factors:

∑
ỹ

 ∏
x′∈X

Py(x′)|ŷ,BI
(ỹ(x′))

 ∑
x∈X

H(δỹ(x) , Qθ,I(x)).

(3)

Factorizing out sums equal to one results in∑
x∈X

∑
ỹ(x)

Py(x)|ŷ,BI
(ỹ(x))H(δỹ(x) , Qθ,I(x)). (4)

Expanding the definition of cross-entropy yields the desired
expression: ∑

x∈X
H(Py(x)|ŷ,BI

, Qθ,I(x)) (5)

2.2. Fréchet derivative of matrix inverse

This result is used in the derivation of the derivative of
the random-walk partition function. An intuitive derivation
is provided here.

Suppose Ax = b. We wish to find an expansion linear in
εV for x̃ := (A+ εV )−1b, assuming the inverse exists.

(A+ εV )x̃ = b (6)
Ax̃ = b− εV x̃ (7)

x̃ = A−1b− εA−1V x̃ (8)

= A−1b− εA−1V (A−1b−O(ε)) (9)

= A−1b− εA−1V A−1b+O(ε2) (10)

where the second-to-last line follows from recursive expan-
sion of the same expression.
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Figure 1: Validation set results on VOC 2012 dataset


