
Discriminative Covariance Oriented Representation Learning
for Face Recognition with Image Sets

Wen Wang1,2, Ruiping Wang1,2,3, Shiguang Shan1,2,3, Xilin Chen1,2,3

1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),
Institute of Computing Technology, CAS, Beijing, 100190, China

2University of Chinese Academy of Sciences, Beijing, 100049, China
3Cooperative Medianet Innovation Center, China

wen.wang@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn

In this supplementary material, we give a detailed deriva-
tion of the gradient computing formulas for solving the op-
timization problem in Sec. 4.3. Then a detailed description
is given for the structure of the feature learning network.
Besides, we show some examples for the datasets used in
our experiments.

1. Gradient derivation
In this section, we derive the formulas in Sec. 4.3 for

computing the gradient of objective function J with respect
to network parameters Θ in the Graph Embedding scheme
and the Softmax Regression scheme respectively.

1.1. Graph Embedding Scheme

As defined by Eq. (7) in Sec. 4.3.1, the optimization ob-
jective is defined as:

Θ = arg min
Θ

J(Θ), (S1)

where

J(Θ) =
1

4

∑
i,j

AijLEM
2(Ci, Cj) (S2)

To derive the gradient of J with respect to Θ, we first
compute the derivative of J with respect to hi according to
the Chain Rule [5].

∂J

∂hi
=

1

4

∑
j

Aij
∂

hi
‖ log(Ci)− log(Cj)‖2F

=
1

2

∑
j

Aij
∂

hi
{Tr(log(Ci)− log(Cj))} (log(Ci)− log(Cj))

=
1

2

∑
j

Aij
∂

hi
(Tr log(Ci)) (log(Ci)− log(Cj))

(S3)

By exploiting the fact that Tr log(X) = ln det(X), we
have

∂J

∂hi
=

1

2

∑
j

Aij
∂

hi
ln det(Ci) · (log(Ci)− log(Cj))

=
1

2

∑
j

Aij
∂

hi
ln det

(
(hi)

TJNihi
)

· (log(Ci)− log(Cj))

=
∑
j

AijJNihiC
−1
i · (log(Ci)− log(Cj)) .

(S4)

Then we accordingly back propagate to the successive
layer using the same mechanism of the Siamese network in
[3].

1.2. Softmax Regression Scheme

The optimization objective is formulated as Eq. (9) in
Sec. 4.3.2, i.e.,

Θ′ = arg min
Θ′

J(Θ′), (S5)

where

J(Θ′) =
1

n

n∑
i=1

m∑
j=1

1{yi = j} log(oij), (S6)

Firstly, we refer to [2] and give the gradient of J with
respect to parameters W and b for the softmax regression
machine as follows,

∂J

∂Wj
= − 1

n

n∑
i

vi(1{yi = j} − oij) + λWj

∂J

∂bj
= − 1

n

n∑
i

(1{yi = j} − oij)
(S7)

1



where Wj denotes the j-row vector of W , and bj is the j-th
element of b.

Since this is the output layer, we can directly measure
the error term ∆oi by the difference between the network
output oi and the true target value yi, i.e., ∆oi = yi − oi.

To further compute the gradient of the update layers us-
ing back-propagation, we also need start with computing
the derivative of J with respect to hi, i.e.,

(
∂J

∂hi
)pq =

∑
kl

(∆Ci)kl
∂(Ci)kl
∂(hi)pq

, (S8)

where ∆Ci = ∂J
∂Ci

and the subscripts (·)pq denote the el-
ement of the p-th row q-th column. Since we have Ci =
hTi JNi

hi, the above equation is derived as:

(
∂J

∂hi
)pq =

∑
k 6=q=l

(∆Ci)kq(hTi JNi
)kp

+
∑

k=q 6=l

(∆Ci)ql(JNi
hi)pl

+ (δCi
)qq(hTi JNi

)qp + (∆Ci)qq(JNi
hi)pq

=
∑
k

(∆Ci)kq(hTi JNi)kp +
∑
l

(∆Ci)ql(JNihi)pl

= (JT
Ni
hi∆Ci + JNi

hi∆C
T
i )pq,

(S9)

i.e.,

∂J

∂hi
= JT

Ni
hi∆Ci + JNi

hi∆C
T
i . (S10)

Then we give the derivation of ∆Ci.

∆Ci =
∂J

∂Ci
=
∑
kl

(∆vi)kl
∂(logCi)kl

∂Ci
. (S11)

Let Ci = UiΣiU
T
i be the eigen-decomposition of Ci,

i.e., (Σi)tt is an eigenvalue of Ci and the t-th column vec-
tor of Ui is the corresponding eigenvector. Thus its log-
covariance matrix is formulated as Eq. (5) in Sec. 4.3.1,
i.e., logCi = Ui log ΣiU

T
i . Next we attempt to derive the

numerical expression of ∂(log Ci)kl

∂Ci
element by element.

∂(logCi)kl
∂(Ci)pq

=
∂(Ui log ΣiU

T
i )kl

∂(Ci)pq

=
∑
t

∂(Ui log ΣiU
T
i )kl

∂(Σi)tt

∂(Σi)tt
∂(Ci)pq

+
∑
st

∂(UiΣiU
T
i )kl

∂(Ui)st

∂(Ui)st
∂(Ci)pq

.

(S12)

To derive ∂(Σi)tt
∂(Ci)pq

and ∂(Ui)st
∂(Ci)pq

, we refer to [1] and intro-
duce a lemma.

Lemma 1 Let A is real and symmetric, λi and vi are dis-
tinct eigenvalues and eigenvectors ofA with vTi vi = 1, then

∂λi = vTi ∂(A)vi

∂vi = (λiI −A)+∂(A)vi,
(S13)

where A+ denote the pseudo inverse (or Moore-Penrose in-
verse) of A.

Based on this lemma, Eq. (S12) equals to the equation
below.

∂(logCi)kl
∂(Ci)pq

=
∑
t

(Ui)kt(Σi)
−1
tt (Ui)lt(Ui)pt(Ui)qt

+
∑
st

(δls(Ui log Σi)kt + δks(log ΣiU
T
i )tl)

((Σi)ttI − Ci)
+
sp(Ui)qt,

(S14)

where δij = 1 when i = j and δij = 0 otherwise.
By putting Eq. (14) into Eq. (11), ∆Ci can be derived as

follows:

(∆Ci)pq =
∑
klt

(Ui)pt(U
T
i )tk(∆vi)kl(Ui)lt(Σi)

−1
tt (UT

i )tq

+
∑
klt

((Σi)ttI − Ci)
+
pl(∆v

T
i )lk(Ui log Σi)kt(U

T
i )tq

+
∑
klt

((Σi)ttI − Ci)
+
pk(∆vi)kl(Ui log Σi)lt(U

T
i )tq

=

(
∆viUiΣ

−1
i UT

i + ((Σi)ttI − Ci)
+∆vTi logCi

+ ((Σi)ttI − Ci)
+∆vi logCi

)
pq

(S15)

i.e.,

∆Ci

= ∆viUiΣ
−1
i UT

i + ((Σi)ttI − Ci)
+(∆vi + ∆vTi ) logCi.

(S16)

Here ∆vi can be back propagated from the error term ∆oi
in the output layer as follows:

∆vi = ∆oiW
T = (yi − oi)WT . (S17)

Plugging this into Eq. (S14), we obtain:

∆Ci

= (yi − oi)WTUiΣ
−1
i UT

i + ((Σi)ttI − Ci)
+

((yi − oi)WT +W (yi − oi)T ) logCi.

(S18)

Finally by using Eq. (S18) to substitute ∆Ci, the deriva-
tive ∂J

∂hi
is obtained. Hence, we can use back propagation

algorithm to successively compute the gradients for the ear-
lier layer similarly with [6].

2



Layer Output Size Kernel Size Kernel Num Stride
conv1 52× 44× 20 4× 4× 3 20 1
pool1 26× 22× 20 − − 2
conv2 24× 20× 40 3× 3× 20 40 1
pool2 12× 10× 40 − − 2
conv3 10× 8× 60 3× 3× 40 60 1
pool3 5× 4× 60 − − 2
conv4 4× 3× 80 2× 2× 60 80 1

full 160 − − 1

Table 1: Feature learning network configuration.

2. Feature Learning Network Configuration
Due to the property of compact structure and thereby rel-

atively low computation complexity, we choose a feature
learning network which has similar structure with the one in
[6]. It takes the RGB image of size 55×47 as input and con-
sists of four convolutional layers and a fully-connected lay-
er. The first three convolutional layers are followed by max-
pooling and the ReLU [4] is used to equip with all the con-
volutional layers and the fully-connected layer. The fully-
connected layer is connected to both the third and fourth
convolutional layers. By passing through the feature learn-
ing network, a 160-dimensional feature vector is extracted
for each sample image. Besides, the network structure is
shown in Tab. 1, where the output size, kernel size, number
of kernels and stride are indicated for each layer.

3. Dataset Examples
Fig. 1 shows some examples for the three datasets used in

our experiments, i.e., YouTube Celebrities (YTC), YouTube
Face DB (YTF) and Point-and-Shoot Challenge (PaSC).

References
[1] K. T. Abou-Moustafa. On derivatives of eigenvalues and

eigenvectors of the generalized eigenvalue problem., October
2010. McGill Technical Report.

[2] C. M. Bishop. Neural networks for pattern recognition. Ox-
ford university press, 1995.

[3] S. Chopra, R. Hadsell, and Y. Lecun. Learning a similari-
ty metric discriminatively, with application to face verifica-
tion, 2005. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[4] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In International Conference on
Machine learning (ICML), 2010.

[5] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook.
Technical University of Denmark, 2008.

[6] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face
representation by joint identification-verification. In Advances
in Neural Information Processing Systems (NIPS), 2014.

(a) YTC

(b) YTF

(c) PaSC

Figure 1: Some examples of the datasets.

3


