Discriminative Covariance Oriented Representation Learning for Face Recognition with Image Sets

Wen Wang1,2, Ruiping Wang1,2,3, Shiguang Shan1,2,3, Xilin Chen1,2,3
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Cooperative Medianet Innovation Center, China
wen.wang@vipl.ict.ac.cn, \{wangruiping, sgshan, xlchen\}@ict.ac.cn

In this supplementary material, we give a detailed derivation of the gradient computing formulas for solving the optimization problem in Sec. 4.3. Then a detailed description is given for the structure of the feature learning network. Besides, we show some examples for the datasets used in our experiments.

1. Gradient derivation

In this section, we derive the formulas in Sec. 4.3 for computing the gradient of objective function J with respect to network parameters Θ in the Graph Embedding scheme and the Softmax Regression scheme respectively.

1.1. Graph Embedding Scheme

As defined by Eq. (7) in Sec. 4.3.1, the optimization objective is defined as:

$$J(\Theta) = \frac{1}{4} \sum_{i,j} A_{ij} \text{LEM}^2(C_i, C_j)$$ \hspace{1cm} (S2)

To derive the gradient of J with respect to Θ, we first compute the derivative of J with respect to h_i according to the Chain Rule [5].

$$\frac{\partial J}{\partial h_i} = \frac{1}{4} \sum_j A_{ij} \frac{\partial}{\partial h_i} \| \log(C_i) - \log(C_j) \|^2_F$$

$$= \frac{1}{2} \sum_j A_{ij} \frac{\partial}{\partial h_i} \{ \text{Tr}(\log(C_i) - \log(C_j)) \} (\log(C_i) - \log(C_j))$$

$$= \frac{1}{2} \sum_j A_{ij} \frac{\partial}{\partial h_i} (\text{Tr} \log(C_i)) (\log(C_i) - \log(C_j))$$ \hspace{1cm} (S3)

By exploiting the fact that $\text{Tr} \log(X) = \ln \det(X)$, we have

$$\frac{\partial J}{\partial h_i} = \frac{1}{2} \sum_j A_{ij} \frac{\partial}{\partial h_i} \text{ln det}(C_i) \cdot (\log(C_i) - \log(C_j))$$

$$= \frac{1}{2} \sum_j A_{ij} \frac{\partial}{\partial h_i} \text{ln det} ((h_i)^T J_i h_i)$$

$$\cdot (\log(C_i) - \log(C_j))$$

$$= \sum_j A_{ij} J_i h_i C_i^{-1} \cdot (\log(C_i) - \log(C_j)) .$$ \hspace{1cm} (S4)

Then we accordingly back propagate to the successive layer using the same mechanism of the Siamese network in [2].

1.2. Softmax Regression Scheme

The optimization objective is formulated as Eq. (9) in Sec. 4.3.2, i.e.,

$$J(\Theta') = \frac{1}{n} \sum_{i,j} 1\{y_i = j\} \log(o_{ij})$$ \hspace{1cm} (S6)

Firstly, we refer to [2] and give the gradient of J with respect to parameters W and b for the softmax regression machine as follows,

$$\frac{\partial J}{\partial W_j} = -\frac{1}{n} \sum_i v_i (1\{y_i = j\} - o_{ij}) + \lambda W_j$$

$$\frac{\partial J}{\partial b_j} = -\frac{1}{n} \sum_i (1\{y_i = j\} - o_{ij})$$ \hspace{1cm} (S7)
where W_j denotes the j-row vector of W, and b_j is the j-th element of b.

Since this is the output layer, we can directly measure the error term Δo_i by the difference between the network output o_i and the true target value y_i, i.e., $\Delta o_i = y_i - o_i$.

To further compute the gradient of the update layers using back-propagation, we also need start with computing the derivative of J with respect to h_i, i.e.,
\[
\frac{\partial J}{\partial h_i} = \sum_{kl} (\Delta C_{i})_{kl} \frac{\partial (C_{i})_{kl}}{\partial (h_i)_{pq}}.
\]
(S8)

where $\Delta C_{i} = \frac{\partial J}{\partial C_{i}}$, and the subscripts $(\cdot)_{pq}$ denote the element of the p-th row q-th column. Since we have $C_{i} = h_{i}^{T} J_{N} h_{i}$, the above equation is derived as:
\[
\frac{\partial J}{\partial h_i} = \sum_{k \neq l=1}^{N} (\Delta C_{i})_{ql}(h_{i}^{T} J_{N})_{kp} + \sum_{k=\neq l}^{N} (\Delta C_{i})_{q}(J_{N} h_{i})_{pl}
\]
\[
+ (\Delta C_{i})_{q}(h_{i}^{T} J_{N})_{qp} + (\Delta C_{i})_{q}(J_{N} h_{i})_{pq}
\]
\[
= \sum_{k} (\Delta C_{i})_{k}(h_{i}^{T} J_{N})_{kp} + \sum_{l} (\Delta C_{i})_{l}(J_{N} h_{i})_{pl}
\]
\[
= (J_{N}^{T} h_{i}) \Delta C_{i} + J_{N} h_{i} \Delta C_{i}^{T}.
\]
(S9)

i.e.,
\[
\frac{\partial J}{\partial h_i} = J_{N}^{T} h_{i} \Delta C_{i} + J_{N} h_{i} \Delta C_{i}^{T}.
\]
(S10)

Then we give the derivation of ΔC_{i}.
\[
\Delta C_{i} = \frac{\partial J}{\partial C_{i}} = \sum_{kl} (\Delta v_{i})_{kl} \frac{\partial (\log C_{i})_{kl}}{\partial C_{i}}.
\]
(S11)

Let $C_{i} = U_{i} \Sigma_{i} U_{i}^{T}$ be the eigen-decomposition of C_{i}, i.e., $(\Sigma_{i})_{tt}$ is an eigenvalue of C_{i} and the t-th column vector of U_{i} is the corresponding eigenvector. Thus its logarithm matrix is formulated as Eq. (5) in Sec. 4.3.1, i.e., $\log C_{i} = U_{i} \Sigma_{i} U_{i}^{T}$. Next we attempt to derive the numerical expression of $\frac{\partial (\log C_{i})_{kl}}{\partial C_{i}}$ element by element.

\[
\frac{\partial (\log C_{i})_{kl}}{\partial C_{i}} = \frac{\partial (U_{i} \log \Sigma_{i} U_{i}^{T})_{kl}}{\partial (C_{i})_{pq}}
\]
\[
= \sum_{t} \frac{\partial (U_{i} \log \Sigma_{i} U_{i}^{T})_{kl}}{\partial (\Sigma_{i})_{tt}} \frac{\partial (\Sigma_{i})_{tt}}{\partial (C_{i})_{pq}}
\]
\[
+ \sum_{st} \frac{\partial (U_{i} \Sigma_{i} U_{i}^{T})_{kl}}{\partial (U_{i})_{st}} \frac{\partial (U_{i})_{st}}{\partial (C_{i})_{pq}}.
\]
(S12)

To derive $\frac{\partial (\Sigma_{i})_{tt}}{\partial (C_{i})_{pq}}$ and $\frac{\partial (U_{i})_{st}}{\partial (C_{i})_{pq}}$, we refer to [1] and introduce a lemma.

Lemma 1 Let A is real and symmetric, λ_{i} and v_{i} are distinct eigenvalues and eigenvectors of A with $v_{i}^{T} v_{i} = 1$, then
\[
\partial \lambda_{i} = v_{i}^{T} \partial (A) v_{i},
\]
\[
\partial v_{i} = (\lambda_{i} I - A)^{+} \partial (A) v_{i},
\]
where A^{+} denote the pseudo inverse (or Moore-Penrose inverse) of A.

Based on this lemma, Eq. (S12) equals to the equation below.
\[
\frac{\partial (\log C_{i})_{kl}}{\partial (C_{i})_{pq}} = \sum_{t} (U_{i})_{kl}(\Sigma_{i})_{tt}^{-1}(U_{i})_{kt}(U_{i})_{pt}(U_{i})_{qt}
\]
\[
+ \sum_{st} (\delta_{st}(U_{i} \log \Sigma_{i})_{kl} + \delta_{st}(\log \Sigma_{i} U_{i}^{T})_{tt})
\]
\[
((\Sigma_{i})_{tt} I - C_{i})_{sp}(U_{i})_{qt},
\]
(S14)

where $\delta_{ij} = 1$ when $i = j$ and $\delta_{ij} = 0$ otherwise.

By putting Eq. (14) into Eq. (11), ΔC_{i} can be derived as follows:
\[
(\Delta C_{i})_{pq} = \sum_{klt}(U_{i})_{pt}(U_{i}^{T})_{lt}(\Delta v_{i})_{kl}(U_{i})_{tt}((\Sigma_{i})_{tt}^{-1}U_{i}^{T})_{tq}
\]
\[
+ \sum_{klt}(\delta_{lt}(U_{i} \log \Sigma_{i})_{kl} + \delta_{lt}(\log \Sigma_{i} U_{i}^{T})_{tt})
\]
\[
((\Sigma_{i})_{tt} I - C_{i})_{pq}(U_{i})_{qt},
\]
(S15)

i.e.,
\[
\Delta C_{i} = \Delta v_{i} U_{i} \Sigma_{i}^{-1} U_{i}^{T} + ((\Sigma_{i})_{tt} I - C_{i})^{+} \Delta U_{i}^{T} \log C_{i}
\]
\[
((\Sigma_{i})_{tt} I - C_{i})^{+} \Delta v_{i} \log C_{i}
\]
(S16)

Here Δv_{i} can be back propagated from the error term Δo_i in the output layer as follows:
\[
\Delta v_{i} = \Delta o_i W^{T} = (y_i - o_i)W^{T}.
\]
(S17)

Plugging this into Eq. (S14), we obtain:
\[
\Delta C_{i} = (y_i - o_i)W^{T}U_{i} \Sigma_{i}^{-1}U_{i}^{T} + ((\Sigma_{i})_{tt} I - C_{i})^{+} W(y_i - o_i)W^{T} \log C_{i}.
\]
(S18)

Finally by using Eq. (S18) to substitute ΔC_{i}, the derivative $\frac{\partial J}{\partial h_i}$ is obtained. Hence, we can use back propagation algorithm to successively compute the gradients for the earlier layer similarly with [6].
Table 1: Feature learning network configuration.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Output Size</th>
<th>Kernel Size</th>
<th>Kernel Num</th>
<th>Stride</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>52 × 44 × 20</td>
<td>4 × 4 × 3</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>pool1</td>
<td>26 × 22 × 20</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>conv2</td>
<td>24 × 20 × 40</td>
<td>3 × 3 × 20</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>pool2</td>
<td>12 × 10 × 40</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>conv3</td>
<td>10 × 8 × 60</td>
<td>3 × 3 × 40</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>pool3</td>
<td>5 × 4 × 60</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>conv4</td>
<td>4 × 3 × 80</td>
<td>2 × 2 × 60</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>full</td>
<td>160</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Feature Learning Network Configuration

Due to the property of compact structure and thereby relatively low computation complexity, we choose a feature learning network which has similar structure with the one in [6]. It takes the RGB image of size 55 × 47 as input and consists of four convolutional layers and a fully-connected layer. The first three convolutional layers are followed by max-pooling and the ReLU [4] is used to equip with all the convolutional layers and the fully-connected layer. The fully-connected layer is connected to both the third and fourth convolutional layers. By passing through the feature learning network, a 160-dimensional feature vector is extracted for each sample image. Besides, the network structure is shown in Tab. [1] where the output size, kernel size, number of kernels and stride are indicated for each layer.

3. Dataset Examples

Fig. 1 shows some examples for the three datasets used in our experiments, i.e., YouTube Celebrities (YTC), YouTube Face DB (YTF) and Point-and-Shoot Challenge (PaSC).

References