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Abstract

We include some proofs and derivations of the rotational equivariance properties of the circular harmonics, along with a
demonstration of how we calculate the number of parameters for various network architectures.

1. Equivariance properties
In Section 3.2 we mentioned that cross-correlation with the circular harmonics is a 360◦-rotation equivariant feature

transform. Here we provide the proof, and some of the properties mentioned in Arithmetic and Equivariance Condition.

1.1. Equivariance of the Circular Harmonics

We are interested in proving that there exists a filter Wm, such that cross-correlation of F with Wm yields a rotationally
equivariant feature map. The proof requires us to introduce two different kinds of transformation: rotationR and translation
T . To simplify the math, we use vector notation, so the spatial domain of the filter/image is R2. We write the filter as
Wm(x) and image as F(x) for x ∈ R2. We define the transformation operators Rθ and Tt, such that RθF = F(R−θx) and
TtF = F(x−t), where Rθ is a 2D rotation matrix for a θ counter-clockwise rotation. We introduce rotational cross-correlation
?. This is defined as

[Wm ? F] =
∫

Φ

∫
R

Wm(rRφx̂)F(rRφx̂) drdφ, (1)

where we have used the decomposition x = rx̂, with r = ‖x‖2 ≥ 0 and x̂ = x/r. The rotational cross-correlation is
performed about the origin of the image. If we rotate the image, then we have

[Wm ?RθF] =
∫

Φ

∫
R

Wm(rRφx̂)F(rRφR−θx̂) drdφ (2)

=

∫
Φ

∫
R

Wm(rRφx̂)F(rRφ−θx̂) drdφ (3)

=

∫
Φ

∫
R

Wm(rRφ′+θx̂)F(rRφ′ x̂) drdφ′. (4)

If we define Wm(x) = Wm(rx̂) = R(r)ei(mφ+β), where φ = ∠x̂, then

[Wm ?RθF] =
∫

Φ

∫
R

Wm(rRφ′+θx̂)F(rRφ′ x̂) drdφ′ (5)

=

∫
Φ

∫
R

R(r)ei(m(φ′+θ)+β)F(rRφ′ x̂) drdφ′ (6)

= eimθ
∫

Φ

∫
R

R(r)ei(mφ
′+β)F(rRφ′ x̂) drdφ′ (7)

= eimθ[Wm ? F]. (8)
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And so rotational cross-correlation is rotationally equivariant about the origin of rotation. In the next part, we build up to a
result needed for proving the chained cross-correlation result.

Cross-correlation about t To perform the rotational cross-correlation about another point t, we first have to translate the
image such that t is the new origin, so Ft(x) = F(x− t), then perform the rotational cross-correlation, so

[Wm ? TtF] = [Wm ? Ft] (9)

=

∫
Φ

∫
R

Wm(rRφx̂)Ft(rRφx̂) drxdφ (10)

=

∫
Φ

∫
R

Wm(rRφx̂)F(rRφx̂− t) drxdφ. (11)

Cross-correlation about t with rotated F about t In general, for every t this expression returns a different value. The
response of a θ-rotated image about t is then

[Wm ?RθTtF] = [Wm ?RθFt] (12)

=

∫
Φ

∫
R

Wm(rRφx̂)Ft(rR−θRφx̂) drxdφ (13)

=

∫
Φ

∫
R

Wm(rRφx̂)Ft(rRφ−θx̂) drxdφ (14)

=

∫
Φ

∫
R

Wm(rRφ′+θx̂)Ft(rRφ′ x̂) drxdφ′ (15)

= eimθ
∫

Φ

∫
Rz

R(rz)e
i(mφ′+β)Ft(rRφ′ x̂)) drdφ′ (16)

= eimθ[Wm ? TtF]. (17)

Cross-correlation about t with rotated F about origin Say we wish to perform the rotational cross-correlation about a
point t, when the image has been rotated about the origin. Denoting Fθ = RθF, then the response is

[Wm ? TtRθF] = [Wm ? TtFθ] (18)

=

∫
Φ

∫
R

Wm(rRφx̂)Fθ(rxRφx̂− t) drxdφ (19)

=

∫
Φ

∫
R

Wm(rRφx̂)F(rxR−θRφx̂− R−θt) drxdφ (20)

=

∫
Φ

∫
R

Wm(rRφx̂)F(rxRφ−θx̂− R−θt) drxdφ (21)

=

∫
Φ

∫
R

Wm(rRφ′+θx̂)F(rxRφ′ x̂− R−θt) drxdφ′ (22)

= eimθ
∫

Φ

∫
R

Wm(rRφ′ x̂)F(rxRφ′ x̂− R−θt) drxdφ′ (23)

= eimθ[Wm ? TR−θtF]. (24)

Thus we see that cross-correlation of the rotated signal Fθ with the circular harmonic filter Wm = R(r)ei(mφ+β) is equal
to the response at zero rotation [W ? F], multiplied by a complex phase shift eimθ. In the notation of the paper, we denote
this multiplication by eimθ as ψθm[•] = eimθ · •. Thus cross-correlation with Wm yields a rotationally equivariant feature
mapping.

1.2. Properties

1.2.1 Chained cross-correlation

We claimed in Arithmetic and Equivariance Condition, that the rotation order of a feature map resulting from chained
cross-correlations is equal to the sum of the the rotation orders of the filters in the chain. We prove this for a chain of two



filters, and the rest follows by induction. Consider taking a θ-rotated image F about the origin, then cross-correlating it with
a filter Wm as every point in the image plane t ∈ R2, followed by cross-correlation with Wn as a point s ∈ R2. We already
know that the response to the rotation is [Wm ? TtRθF] = eimθ[Wm ? TR−θtF], for all rotations θ of the input and all points
t in the response plane, so we can write the chained convolution as

[Wn ? Ts[Wm ? TtRθF]] = [Wn ? Tse
imθ[Wm ? TR−θtF]] (25)

= eimθ
[
Wn ? Ts[Wm ? TR−θtF]]

]
(26)

We have used the property that the cross-correlation is linear and that we may pull the scalar factor eimθ outside. If we write
G(t) = [Wm ? TtF] then [Wm ? TR−θtF] = G(R−θt) = [RθG](t), so

[Wn ? Ts[Wm ? TtRθF]] = eimθ
[
Wn ? Ts[Wm ? TR−θtF]]

]
(27)

= eimθ[Wn ? TsRθG] (28)

= eimθeinθ
[
Wn ? TR−θsG

]
. (29)

Thus we see that the chained cross-correlation results in a summation of the rotation orders of the individual filters Wm and
Wn. Setting s = 0, such that we evaluate the cross-correlation at the center of rotation, we regain an equation similar to 8.

1.2.2 Magnitude nonlinearities

Point-wise nonlinearities acting on the magnitude of a feature map maintain rotational equivariance. Consider that we have a
point on a feature map of rotation order m, which we can write as Feimθ, where F ≥ 0 is the magnitude of the feature map
and eimθ is the phase component. The output of the nonlinearity g : R+ → R is

g(Feimθ) = g(F )eimθ, (30)

since g only acts on magnitudes. Since for fixed F the output is a function of m and θ only, the point-wise magnitude-acting
nonlinearity preserves rotational equivariance.

1.2.3 Summation of feature maps

The summation of feature maps of the same rotation order is a new feature map of the same rotation order. Consider two
feature maps F1 and F2 of rotation order m. Summation is a pointwise operation, so we only consider two corresponding
points in the feature maps, which we denote F1e

i(mθ+β1) and F2e
i(mθ+β2), where β1 and β2 are phase offsets. The sum is

F1e
i(mθ+β1) + F2e

i(mθ+β2) = eimθ
(
F1e

iβ1 + F2e
iβ2
)
, (31)

which for fixed F1, F2, β1, β2 is a function of m and θ only and so also rotationally equivariant with order m.



2. Number of parameters
Here we list a break down of how we computed the number of parameters for the various network architectures in the

experiments section. The networks architectures used are in Figure 1. Red boxes are cross-correlations, blue boxes are
pooling (average for H-Nets, max for regular CNNs), green boxes are 1× 1-cross-correlations.
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Figure 1. Networks used

2.1. Standard CNN

For a standard CNN layer with i input channels and o output channels, and k × k sized weights, the number of learnable
parameters is iok2. Since there is one bias per output layer, this increases to iok2+o. If using batch normalization, then there
is an extra per-channel scaling factor, which increases the number of learnable parameters to iok2 + 2o. The standard CNN
for the rotated MNIST experiments has 6 layers of 3× 3 cross-correlations, and 1 layer of 4× 4-cross-correlations, with 20
feature maps per layer and 3 batch normalization layers so the number of learnable parameters is 21570. The calculations are
shown in Table 1.

Layer Weights Batch Norm/Bias #Params
1 3 · 3 · 1 · 20 20 200
2 3 · 3 · 20 · 20 2 · 20 3640
3 3 · 3 · 20 · 20 20 3620
4 3 · 3 · 20 · 20 2 · 20 3640
5 3 · 3 · 20 · 20 20 3620
6 3 · 3 · 20 · 20 2 · 20 3640
7 4 · 4 · 20 · 10 10 3210
Total 21570

Table 1. Number of parameters for a regular CNN.

2.2. Harmonic networks

The learnable parameters of a Harmonic Network are the radial profile and the the per-filter phase offset. For a k × k
filter, the number of radial profile elements is equal to the number of rings of equal distance from the center of the filter. For
example, consider the Figure 2, which is an excerpt from the main paper. This is a 5× 5 filter, with 6 rings of equal distance
from the center of the filter (the smallest ring is just a single point). So this filter has 6 radial profile terms and 1 phase offset
to learn. This contrasts with a regular filter, which would have 25 learnable parameters. Note, that for filters with rotation
order m 6= 0, the center pixel of the filter is in fact always zero, and so for a 5× 5 rotation order m 6= 0 filter, the number of
radial profile terms is 6− 1 = 5. So for the H-Net in the main paper with 5× 5 filters and batch normalization in layers 2, 4,
& 6, the number of learnable parameters is 33347. The calculations are in Table 2. Note that the final layer contains just one
set of biases and no phase offsets. A similar set of calculations can be performed for the deeply supervised networks.
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Figure 2. Each radius has a single learnable weight. Then there is a bias for the whole filter.

Layer m = 0 m = 1 Batch Norm/Bias #Params
1 6 · 1 · 8 + 1 · 8 5 · 1 · 8 + 1 · 8 2 · 8 120
2 6 · 8 · 8 + 8 · 8 5 · 8 · 8 + 8 · 8 2 · 16 864
3 6 · 8 · 16 + 8 · 16 5 · 8 · 16 + 8 · 16 2 · 16 1696
4 6 · 16 · 16 + 16 · 16 5 · 16 · 16 + 16 · 16 2 · 32 3392
5 6 · 16 · 35 + 16 · 35 5 · 16 · 35 + 16 · 35 2 · 35 7350
6 6 · 35 · 35 + 35 · 35 5 · 35 · 35 + 35 · 35 2 · 70 16065
7 6 · 35 · 10 5 · 35 · 10 10 3860
Total 33347

Table 2. Number of parameters for H-Net.


