1. Quasi-isometry inference with Batch Normalization

For batch normalization (BN) layer, its Jacobian, denoted as J, is not only related with components of activations (d components in total), but also with samples in one minibatch (size of m).

Let $x_j^{(k)}$ and $y_i^{(k)}$ be kth component of jth input sample and ith output sample respectively and given the independence between different components, $\frac{\partial y_i}{\partial x_j}$ is one of m^2d nonzero entries of J. In fact, J is a tensor but we can express it as a blocked matrix:

$$J = \begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1m} \\ D_{21} & D_{22} & \cdots & D_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ D_{m1} & D_{m2} & \cdots & D_{mm} \end{bmatrix}$$

(1)

where each D_{ij} is a $d \times d$ diagonal matrix:

$$D_{ij} = \begin{bmatrix} \frac{\partial y_i^{(1)}}{\partial x_j} \\ \frac{\partial y_i^{(2)}}{\partial x_j} \\ \vdots \\ \frac{\partial y_i^{(d)}}{\partial x_j} \end{bmatrix}$$

(2)

Since BN is a component-wise rather than sample-wise transformation, we prefer to analyse a variant of Eq. 1 instead of D_{ij}. Note that by elementary matrix transformation, the $m^2d \times d$ matrices can be converted into $d m \times m$ matrices:

$$J = \begin{bmatrix} J_{11} & 0 & \cdots & 0 \\ 0 & J_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{dd} \end{bmatrix}$$

(3)

and the entries of each J_{kk} is

$$\frac{\partial y_i}{\partial x_i} = \rho \left[\Delta(i = j) - \frac{1 + \hat{x}_i \hat{x}_j}{m} \right]$$

(4)

The notations of ρ, $\Delta(\cdot)$ and \hat{x}_k have been explained in our main paper and here we omit the component index k for clarity. Base on the observation of Eq. 4, we separate the numerator of latter part and denote it as $U_{ij} = 1 + \hat{x}_i \hat{x}_j$.

Let $x = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_m)^T$, $e = (1, 1, ..1)^T$, we have

$$U = ee^T + \hat{x}x^T$$

(5)

and

$$J_{kk} = \rho(I - \frac{1}{m}U)$$

(6)

Recall that for any column vector v, $\text{rank}(vv^T) = 1$. According to the subadditivity of matrix rank [11], it implies that

$$\text{rank}(U) = \text{rank}(ee^T + \hat{x}x^T) \leq \text{rank}(ee^T) + \text{rank}(xx^T) = 2$$

(7)

Eq. 7 tells us that U actually only has two nonzero eigenvalues, say λ_1 and λ_2, and we can formulate U as follow:

$$U = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_1 \end{bmatrix}$$

(8)

combined with Eq. 6, finally we get the equation of J_{kk} from the eigenvalue decomposition view, which is

$$J = P^T \rho \begin{bmatrix} 1 - \frac{\lambda_1}{m} & 1 - \frac{\lambda_2}{m} \\ 1 & \ddots \\ \vdots & \ddots & 1 \end{bmatrix} P$$

(9)
To show that J_{kk} probably is not full rank, we formulate the relationship between U^2 and U

\[U^2 = (ee^T + \hat{x}\hat{x}^T)(ee^T + \hat{x}\hat{x}^T) = ee^T ee^T + ee^T \hat{x}\hat{x}^T + \hat{x}\hat{x}^T ee^T + \hat{x}\hat{x}^T \hat{x}\hat{x}^T = mee^T + \left(\sum_{i=1}^{m} \hat{x}_i \right) eex^T + \left(\sum_{i=1}^{m} \hat{x}_i^2 \right) \hat{x}\hat{x}^T \]

\[= mU + \left(\sum_{i=1}^{m} \hat{x}_i \right) eex^T + \left(\sum_{i=1}^{m} \hat{x}_i \right) eex^T + \left(\sum_{i=1}^{m} \hat{x}_i^2 - m \right) \hat{x}\hat{x}^T \]

(10)

Note that $\hat{x}_i \sim N(0, 1)$, so we can regard the one-order and second-order accumulated items in Eq. (10) as approximately equaling the corresponding one-order and second-order statistical moments for relatively large mini-batch, from which we get $U^2 \approx mU$.

The relationship implies that $\lambda_1^2 \approx m\lambda_1$ and $\lambda_2^2 \approx m\lambda_2$. Since λ_1 and λ_2 cannot be zeros, it concludes that $\lambda_1 \approx \lambda_2 \approx m$ therefor $1 - \frac{\lambda_1}{m} \approx 0$ and $1 - \frac{\lambda_2}{m} \approx 0$ if batch size is sufficient in a statistical sense.

References