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1. Implementation details

We include in this section more implementation details
of the presented method.

1.1. Body model

The SMPL model [1] is gender specific. Both the female
and male models consist of N = 6890 vertices. To model
shape variations, we use Nshape = 10 shape coefficients.
The pose consists of Npose = 3× 24 + 3 = 75 parameters.

1.2. Optimisation parameters

We find that results are not very sensitive to optimization
parameter weights. We set the weights so that the different
terms in the objective are balanced; roughly in the same
order of magnitude. We define the single-frame objective
function as:

E(TEst,M(β, 0),θ;S) = λskinEskin + Ecloth

+λcplEcpl + λpriorEprior,

On BUFF dataset, we use λskin = 100, λoutside = 100,
λfit = 3, λcpl = 1, and λprior = 0.1. At the stage of
estimating per-frame shape Tk

Est, we increase λskin by a
factor 10 to retrieve more personalized details.

On INRIA dataset, since texture information is not avail-
able, we consider all vertices as cloth and therefore set
λskin = 0. We decreased λfit = 1 to be more robust to
wide clothing, and keep other weights unchanged. To make
a fair comparison in this dataset, we initialize the pose us-
ing the exact same Stitched Puppet [4] landmarks computed
in [3].

To create the fusion scan from the single-frame objective
results, we only retain one frame every 1/3 of second. We
found this sampling to be a good trade-off between accuracy
and computational time.

1.3. Computation time

As all sequences can be computed in parallel, we report
the computation time for one sequence. The first step is
to solve for the single-frame objective with all vertices la-
beled as skin (Section 4.1). The computation time of this
step is ∼10 seconds per frame. Then the fusion scan is cre-
ated by a simple rearrangement of data. The fusion mesh
computation (Section 4.2) takes ∼200 seconds. The final
detail refinement computation (Section 4.3) takes ∼40 sec-
onds per frame. All computations are executed on an 3GHz
8-Core Intel Xeon E5. The current implementation is not
efficient and the computational time could be drastically re-
duced. In the future, we plan to parallelize the computation
of the Jacobians on the GPU, which represent most of the
computing time in the process.

2. Segmentation

For completeness, we describe the automatic method we
used for segmenting the scan into skin and cloth vertices
(Section 4 of the paper). The segmentation method is the
one in [2]. Segmentation is not part of our contribution and
other more sophisticated learning based methods could be
used as well. Furthermore, the method presented in Section
4 is robust to inaccurate cloth-skin segmentations thanks to
the smooth geodesic distance field.
By minimizing the single frame objective using all labels
as skin (Section 4.2) we obtain frame-wise cloth templates
Tk

cloth that align with the scans Sk. Instead of solving the
segmentation on the image domain, we solve it directly on
the mesh generated by Tk

cloth to exploit useful 3D shape in-
formation. The idea is to solve a Markov Random Field
(MRF) with a graph connectivity given by the template
mesh.

More formally, let us introduce one random variable vi,
for every node in the template mesh i ∈ T . These random
variables can take discrete values {0 . . . Ngar}, where 0 cor-
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responds to the skin and Ngar are the number of garments
the person is wearing. For the purposes of this paper, we are
only interested in separating skin from cloth. Then we solve
for the collection of random variables v = {vi | i ∈ T } that
minimize the following cost function

E(v) =
∑
i∈T

ϕi(vi) +
∑

(i,j)∈T

ψij(vi, vj) (1)

where ϕi is a node-dependent unary term and ψij is a binary
term.

Unary term: The unary term encodes the negative log
likelihood of node i taking label vi

ϕi(vi) =
∑

j∈Bi(S)

− log(pj(vi)) + εi(vi) (2)

where the first term is the data likelihood term and the sec-
ond term ε is a semantic body prior over body parts.
Data likelihood term: We fit a Gaussian mixture model
(GMM) to the appearance of each of the garments. In order
to be more robust to illumination changes we fit the GMM
in HSV space instead of RGB. For every scan point xj in
the neighborhood Bi(S) of node i, we evaluate the likeli-
hood under the fitted GMM:

pj(s) =

N∑
m=0

πm
s N (I(xj)|µm

s ,Σ
m
s ) (3)

where I(xj) is the HSV appearance of scan point xj , and
µm
s ,Σ

m
s are the mean and covariance of mixture modem of

segmentation class s.
To train the GMM, we select one frame, and use the

information-theoretic criteria (BIC) to determine the num-
ber of modes that represents the data well. Then, the skin
model is automatically selected, and the rest of the modes
fused into a non-skin mode. The selected frame for training
is the first of each sequence. We tested randomly selecting
other frames obtaining almost identical results. The training
of the GMM for each subject is fully automatic.

Although the appearance model is powerful, it is sensi-
tive to noise, shadows and illumination changes. Conse-
quently, we add a semantic prior term that encodes prior
knowledge of plausible garment segmentations.
Semantic body prior: This encodes intuitive information
such as: the torso nodes are more likely to be T-shirt, hands
and head have to be skin. To that end, we leverage a seg-
mentation into parts of our body model. Formally, we define
two kinds of priors,

1. a node i is more likely to be label s = l in which case
εi(s) = 1− δ(s− l)

2. a node i can not take a certain label in which case
εi(s) = δ(s− l).

In particular, for Case 1, the nodes of the head, hands should
be labeled as “skin,” the nodes of the spine or torso should
be labeled “shirt,” and the nodes of the thighs should be
labeled “ trousers.” For Case 2, we penalize when the upper-
body nodes are labeled as “trousers” or when the calf and
feet are labeled as “T-shirt.”

This sort of intuitive prior knowledge has proven to be
very effective enabling segmentation where it would have
been impossible otherwise. The prior term helps to cor-
rectly segment hands and feet, for which the scan often con-
tains noise and missing data.

Pairwise term: This is a smoothness term, encouraging
neighboring pixels to have the same label. This term is as
simple as it can be; given the adjacency matrix W of size
|T | × |T | of our template mesh, the term evaluates to

ψij(vi, vj) = Wij (1− δ(vi − vj)) (4)

taking cost 1 if nodes i and j are neighbors and take differ-
ent labels, and cost 0 otherwise. The resulting segmentation
is a per node label si indicating to which layer a node be-
longs.

The MRF is solved using the alpha expansion method.

3. Additional results
3.1. Pose estimation with manual markers

We report here for the sake of completeness the alterna-
tive method we used to report pose estimation error at the
time of submission. In [3], landmarks correspondence to
MoCap were manually defined. To obtain a correspondence
we fit the SMPL model to S-SCAPE model to transfer the
landmark locations. In Fig.1 we report the error. The results
in Fig.1 do not reflect the quality of pose estimation due
to two reasons: 1) the manual definition of landmarks pro-
duces a systematic error and 2) fitting SMPL to S-SCAPE
produces another source of systematic error. Therefore, the
curves are dominated by the error in computing the cor-
respondence between body vertices and marker locations.
Consequently, in the paper in Fig.10 we automatically com-
puted the correspondences in 10 different frames for each
sequence and averaged the vertex to marker error for all
frames and correspondence sets. This heavily reduces the
effect of wrong correspondence estimation for both meth-
ods and allows to evaluate pose estimation.

3.2. Robustness to segmentation

In order to evaluate the robustness of the method when
skin/cloth segmentation is not available we evaluate our
method labeling the scans of BUFF as all cloth. The ob-
tained errors are presented in Tab. 1. While the obtained
shapes are less detailed (specially in the face), they are still
accurate.



cloth style t-shirt, long pants soccer outfit Avrg.
tilt twist left 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
all cloth 3.03 3.05 2.69 2.86 3.21 2.74 2.80 2.66 2.90 3.28 2.64 2.90
detailed 2.52 2.83 2.36 2.44 2.27 2.31 2.44 2.59 2.28 2.17 2.23 2.40
hips 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
all cloth 3.20 3.10 2.91 2.96 3.41 2.99 2.94 2.75 2.98 3.42 2.85 3.05
detailed 2.75 2.64 2.63 2.55 2.40 2.56 2.58 2.59 2.50 2.38 2.51 2.55
shoulders mill 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
all cloth 2.76 3.22 3.08 3.25 3.41 2.86 2.78 2.92 2.91 3.26 2.72 3.01
detailed 2.49 2.85 2.72 2.37 2.26 2.59 2.83 2.82 2.28 2.33 2.51 2.55

Table 1. Comparison of the numerical results obtained disregarding the skin/cloth information and using it. When no skin/cloth information
is available, our method still obtains numerically accurate results.
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Figure 1. Comparison of pose estimation accuracy on INRIA dataset. Left: Percentage of landmarks with error less than a given distance
(horizontal axis) in mm. Right: per frame average landmark error. EHBS is [3]. This figure is shown for completeness and does not reflect
pose estimation accuracy but rather a systematic correspondence error between markers and body. We address this issue to produce Fig.
10 in the paper, see text.

3.3. Comparison to fitting SMPL to visible skin
parts

We show here that our approach is more accurate than
simply fitting SMPL to the visible skin parts. The results
can be seen in Fig. 2. Simply fitting to visible skin ignores
the cloth constraints and therefore the shape has large errors
at occluded areas.

3.4. More results

We show a comparison of our method to Yang et al. [3]
on different challenging wide and layered clothing se-
quences on INRIA dataset in Fig.3. Our estimated naked
body shapes are more realistic. By overlaying the results
and the original scans, we observe that our estimations fit
better inside clothing. One can also observe that our method
is robust to layered and wide clothing movement. Further-
more, to illustrate tracking robustness, in Fig.4 we compare
the results of our method with [3] on several frames of one
layered clothing sequence. Given a few equally sampled
frames of the sequence, we are able to demonstrate the im-

Figure 2. Result for a sequence with t-shirt and long pants. (a)
Ground truth minimally clothed shape, (b) heatmap of SMPL fit to
visible skin, (c) heatmap of our approach.

provement of our method when dealing with 3D clothed
sequences. Notice that our method can accurately cap-
ture head orientations which are not recovered by [3]. For
more results and comparisons please refer to the video in
http://buff.is.tue.mpg.de/.

http://buff.is.tue.mpg.de/


Figure 3. Comparison of our results and Yang et al. [3] on representative Inria wide clothing sequences. From left to right: scan, result of
[3], our result. Results are shown in pairs: on the left the estimated shape, on the right the estimated shape with the scan overlayed on top.
From top to bottom: sequences are s1 layered knee, s3 wide spin, s6 layered spin, and s6 layered walk.



Figure 4. Comparison of our results and Yang et al. [3] on s1 layered knee sequence of Inria dataset. From left to right: frame index = [0,
10, 20, 30, 40, 50]. From top to bottom: scans, [3] , our results.

References
[1] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and

M. J. Black. SMPL: A skinned multi-person linear model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015. 1

[2] G. Pons-Moll, S. Pujades, S. Hu, and M. Black. Clothcap:

Seamless 4d clothing capture and retargeting. ACM Trans-
actions on Graphics, (Proc. SIGGRAPH) [to appear], 2017.
1

[3] J. Yang, J.-S. Franco, F. Hétroy-Wheeler, and S. Wuhrer. Esti-
mation of Human Body Shape in Motion with Wide Clothing.
In European Conference on Computer Vision 2016, Amster-



dam, Netherlands, Oct. 2016. 1, 2, 3, 4, 5
[4] S. Zuffi and M. J. Black. The stitched puppet: A graphical

model of 3d human shape and pose. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3537–3546. IEEE, 2015. 1


