
Supplementary Material for CVPR Submission 2020

Anonymous Authors

April 10, 2017

Abstract

This supplementary material contains a complete proof of Theorem 2.1 and Lemma 3.1 of the main paper.
Section 1 discusses some technical notations and geometric observations, Section 2 and 3 restates and shows
a complete proof for the theorem and lemma respectively, and Section 4 contains two auxiliary lemmas used
in the main proof.

1 Notations and Recaps
Before commencing our main proof, we introduce some notations, recap the simplified objective function
ϕ̂ and a few basic observations on its geometry. In this note, we use Ca or Cã exchangeably to denote the
m×m circulant matrix generated by a k-length short convolutional kernel awithout ambiguity.

Reversed Circulant Matrix Let Ča0
be the reversed circulant matrix for a0 such that

Ča0 =
[
s0 [ã0] s−1 [ã0] s−2 [ã0] . . . s−(m−1) [ã0]

]
∈ Rm×m, (1.1)

Here, sτ [ã0] denotes a cyclic shift as defined in Equation (3) of the main paper. Since the i-th entry of C∗aã0

satisfies
[C∗aã0]i = 〈si [ã] , ã0〉 = 〈ã, s−i [ã0]〉 = 〈a, ι∗s−i [ã0]〉 , (1.2)

therefore following equation always holds

C∗aã0 = Č∗a0
ã. (1.3)

Projection onto I Let e0, . . . , em−1 denote the standard basis vectors. For index set I =
{
i1, . . . , i|I|

}
6= ∅,

let
VI

.
=
[
ei1 | ei2 | · · · | ei|I|

]
∈ Rm×|I|, (1.4)

and then
PI = VIV

∗
I (1.5)

denote the projection onto the coordinates indexed by I while setting other entries zero.

Partial Signed Support Letu, v be two vectors of the same dimension. If supp(u) ⊆ supp(v) andu(i)v(i) ≥
0 for all i ∈ supp(v), then u attains the partial signed support of v, denoted as u� v.
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Piecewise Quadratic Function Let x∗(a) denote the minimizer for simplified objective function

ϕ̂(a) = min
x

1
2 ‖ã0‖22 + 1

2 ‖x‖
2
2 − 〈a~ x, ã0〉+ λ ‖x‖1 , (1.6)

with sign σ and support I defined as

σ
.
= sign (x∗(a)) ∈ {−1, 0, 1}m , I

.
= supp(σ) ⊆ {0, 1, . . . ,m− 1} 1. (1.7)

By stationary condition for x∗(a), we obtain

x∗(a) = SOFTλ [C∗aã0] = SOFTλ
[
Č∗a0

ιa
]
, (1.8)

where SOFTλ [u] = sign(u) max {|u| − λ, 0} is the entry-wise soft-thresholding operator.
For each sign pattern σ = supp(x∗) ∈ {−1, 0, 1}m, there exists corresponding region on the sphere such

that
Rσ =

{
a | sign

(
SOFTλ

[
Č∗a0

ιa
])

= σ
}
. (1.9)

On the relative interior of each Rσ , the function ϕ̂ has a simple expression:

ϕ̂(a) = ϕ̂σ(a)
.
= − 1

2a
∗ι∗Ča0

PIČ
∗
a0
ιa+ λσ∗PIČ

∗
a0
ιa+ 1

2 −
λ2|I|

2 . (1.10)

Therefore, the objective function is piecewise quadratic and can be rewritten as

ϕ̂σ = 1
2a
∗Mσa+ b∗σa+ Constσ, (1.11)

with
Mσ = −ι∗Ča0PIČ

∗
a0
ι, bσ = λι∗Ča0PIσ. (1.12)

With above notations clarified, we are now ready to present a proof for the main theorem.

2 Proof of Theorem 2.1
Theorem 2.1 Let

Ξ =
{

sign
(
SOFTλ

[
Č∗a0

ιa
])
| a ∈ Sk−1

}
. (2.1)

Define I = {supp(σ) | σ ∈ Ξ}. For each nonempty I =
{
i1 < i2 < · · · < i|I|

}
∈ I, let

WI =

[
ι∗s−i1 [ã0]

‖ι∗s−i1 [ã0]‖2

∣∣∣∣∣ ι∗s−i2 [ã0]

‖ι∗s−i2 [ã0]‖2

∣∣∣∣∣. . .
∣∣∣∣∣ ι∗s−i|I| [ã0]∥∥ι∗s−i|I| [ã0]

∥∥
2

]
∈ Rk×|I| (2.2)

Suppose that for every I ∈ I of size greater than one,

‖W ∗
IWI − I‖`2→`2 <

λ2

6
(2.3)

and that λ < 1. Then every local minimum ā of ϕ̂ over Sk−1 satisfies either ā ∈ R0 (in which case ā is also a global
maximum), or

ā = ± ι∗sτ [ã0]

‖ι∗sτ [ã0]‖2
(2.4)

for some shift τ .
1As in the main paper, we assume thatm dimensional vectors are indexed by the integers 0, 1, . . . ,m− 1.
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Proof On the relative interior of each Rσ , the simplified objective function

ϕ̂σ = 1
2a
∗Mσa+ b∗σa+ cσ (2.5)

has Euclidean derivative and Hessian

∇ϕ̂σ(a) = Mσa+ bσ, (2.6)
∇2ϕ̂σ(a) = Mσ. (2.7)

As we assume a to have unit Frobenius norm, or to live on a sphere, the more natural Riemannian gradient
and Hessian are defined as

grad [ϕ̂σ] (a) = Pa⊥∇ϕ̂σ(a) (2.8)
= Mσa+ bσ − a(a∗Mσa+ b∗σa), (2.9)

Hess [ϕ̂σ] (a) = Pa⊥
(
∇2ϕ̂σ(a)− 〈∇ϕ̂σ(a),a〉 I

)
Pa⊥ (2.10)

= Pa⊥
(
Mσ − (a∗Mσa+ b∗σa)I

)
Pa⊥ . (2.11)

Here,Pa⊥ = I−aa∗ denotes projection onto the tangent space over the sphere at a. As in the Euclidean space,
a stationary point on the sphere needs to satisfy grad [ϕ̂σ] (a) = 0. At a stationary point ā, if Hess [ϕ̂σ] (ā)
is positive semidefinite, the function is convex and ā is a local minimum; if Hess [ϕ̂σ] (ā) has a negative
eigenvalue, then there exists a direction alone which the objective value decreases and hence ā is a saddle
point [AMS07].

Let I =
{
i1 < i2 < · · · < i|I|

}
and define

ηi = ‖ι∗s−i [ã0]‖2 ∀i ∈ I, (2.12)
η = (ηi1 , ηi2 , . . . , ηi|I|) ∈ R|I|, (2.13)

and

U =

[
σi1ι

∗s−i1 [ã0]

ηi1

∣∣∣∣∣σi2ι∗s−i2 [ã0]

ηi2

∣∣∣∣∣. . .
∣∣∣∣∣σi|I|ι∗s−i|I| [ã0]

ηi|I|

]
∈ Rk×|I|. (2.14)

Here, columns of U have unit `2 norm. Then we have

Mσ = −Udiag(η)2U∗, bσ = λUη. (2.15)

As I is defined via soft thresholding, we have
∣∣[Č∗a0

ιa]i
∣∣ > λ holds for every i ∈ I . Hence,

a∗Mσa+ b∗σa = −a∗ι∗Ča0
PIČ

∗
a0
ιa+ λσ∗PIČ

∗
a0
ιa (2.16)

= −
∥∥PIČ∗a0

ιa
∥∥2

2
+ λ

∥∥PIČ∗a0
ιa
∥∥

1
(2.17)

< 0 (2.18)

holds at any a ∈ cl (Rσ) \R0.

Stationary point and implications Consider any stationary point ā ∈ cl (Rσ) \R0 of ϕ̂. By continuity of
the gradient of ϕ̂ (proved in Lemma 2.2), ā is also a stationary point of ϕ̂σ . By definition, grad [ϕ̂σ] (ā) = 0,
which implies that

(ā∗Mσā+ b∗σā)ā = Mσā+ bσ. (2.19)

Note that since ā∗Mσā+ b∗σā 6= 0 and bσ ∈ range(Mσ), this implies that ā ∈ range(Mσ).
Let γ = − (a∗Mσa+ b∗σa) > 0, then the condition for a stationary point ā becomes

γā = Udiag(η)2U∗ā− λUη. (2.20)
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Let α = U∗ā, and note that for each j, αj > 0 and αjηj > λ. In terms of U , the stationarity condition
becomes

γα = U∗Udiag(η)2α− λU∗Uη. (2.21)

Since the diagonal elements of U∗U are all ones, and hence can be written as

U∗U = I + ∆. (2.22)

We have
γα = diag(η)2α− λη + ∆

{
diag(η)2α− λη

}
. (2.23)

As α � 0 and diag(η)α � λ · 12, together with an auxiliary Lemma 4.2 proved in Section 4, we have∥∥diag(η)2α− λη
∥∥

2
≤ ‖α‖2 (2.24)
= ‖U∗ā‖2 (2.25)
≤ ‖U‖`2→`2 (2.26)
≤

√
3/2, (2.27)

whence ∥∥∥∆{diag(η)2α− λη
}∥∥∥
∞
≤

√
3/2× ‖∆‖`2→`∞ . (2.28)

Suppose that ∆ is small enough that the right hand side of (2.28) is bounded by λ2/2, i.e.,

‖∆‖`2→`∞ ≤
λ2

√
6
. (2.29)

Plugging back into the stationary condition diag(η)2α− γα = λη −∆
{

diag(η)2α− λη
}
gives

(diag(η)2 − γ)α � λη − λ2/2 � 0. (2.30)

Since αi < 1 and ηi > λ for all i, which implies that

γ < η2
min − ληmin + λ2/2, (2.31)

where ηmin is the smallest of the ηi.

Negative curvature in Hessian Recall the Riemannian Hessian on the sphere is defined as

Hess [ϕ̂σ] (a) = Pa⊥
(
Mσ − (a∗Mσa+ b∗σa)I

)
Pa⊥ (2.32)

= Pa⊥
(
−U diag(η)2U∗ + γI

)
Pa⊥ . (2.33)

Below argument shows that this Riemmanian Hessian has negative eigenvalues. Let Ũ be an orthonormal
matrix generated via

Ũ
.
= U(U∗U)−1/2 (2.34)

Whenever ‖∆‖`2→`2 < 1/2 holds, Lemma 4.2 guarantees
∥∥∥U − Ũ∥∥∥

`2→`2
< 3 ‖∆‖`2→`2 . Under this condition,

we can lower bound the smallest nonzero eigenvalue of U diag(η)2U∗, as

λmin(U diag(η)2U∗) = σmin(U diag(η))2 (2.35)
2Here, � denotes element-wise inequality between vectors.
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≥
(

max
{
σmin

(
Ũ diag(η)

)
−
∥∥∥U − Ũ∥∥∥ ‖diag(η)‖ , 0

})2

(2.36)

=
(

max
{
ηmin −

∥∥∥U − Ũ∥∥∥ ηmax, 0
})2

(2.37)

≥ η2
min − 3ηmaxηmin ‖∆‖`2→`2 . (2.38)

Since λ < ηmin ≤ ηmax ≤ 1, additionally if ‖∆‖`2→`2 ≤
λ
6 , we have

3ηmaxηmin ‖∆‖`2→`2 ≤ ληmin − λ2/2, (2.39)

Together with (2.29) and (2.31), we can obtain

λmin(U diag(η)2U∗) > γ, (2.40)

or
λmax(Mσ) < −γ. (2.41)

Thus, whenever the following conditions are satisfied

λ < 1, ‖∆‖`2→`∞ ≤
λ2

√
6
, ‖∆‖`2→`2 ≤

λ

6
, (2.42)

we have λmax(Mσ) < −γ as desired.
Above calculations imply that for every ξ ∈ range (Mσ) ⊆ Rk,

ξ∗ (Mσ + γI) ξ < 0. (2.43)

Since
Hess [ϕ̂σ] (ā) = Pā⊥

(
Mσ + γI

)
Pā⊥ , (2.44)

for ξ ∈ ā⊥ ∩ range (Mσ),
ξ∗Hess [ϕ̂σ] (ā) ξ < 0. (2.45)

Hence, on the relative interior relint (Rσ), ϕ̂ ≡ ϕ̂σ obtains, and so this implies that for ‖σ‖0 > 1, there are no
local minima in relint (Rσ).

Relative boundaries We first note that if ‖σ‖0 = 1 and I = {i}, either Rσ is empty when ‖ι∗s−i [ã0]‖2 ≤ λ,
or it contains an open ball around range (Mσ)

⋂
Sk−1 = ± ι∗s−i[ã0]

‖ι∗s−i[ã0]‖2
. Hence, if ā ∈ relbdy (Rσ) is a

stationary point and σ 6= 0, we necessarily have ‖σ‖0 ≥ 2.
Since ā is on the boundary of Rσ , it is also in relbdy (cl (Rσ′)) for some σ′ 6= σ. Let

Ξ = {σ′ | ā ∈ relbdy (cl (Rσ′))} . (2.46)

Suppose that for every σ′ ∈ Ξ, σ � σ′. Hence, range (Mσ) ⊆ range (Mσ′) for every σ′ ∈ Ξ and

ξ∗Hess [ϕ̂σ′ ] (ā) ξ < 0, ∀ ξ ∈ range(Mσ), σ′ ∈ Ξ. (2.47)

By continuity of the gradients, ā is a stationary point for every ϕ̂σ′ such that σ′ ∈ Ξ. If we choose an arbitrary
nonzero ξ ∈ range(Mσ), we have that for every σ′ ∈ Ξ,

ϕ̂σ′(PSk−1 [ā+ tξ]) < ϕ̂(ā)− Ω(t2). (2.48)

There exists a neighborhood N of ā for which, at every a ∈ N ∩Rσ′ , ϕ̂(a) = ϕ̂σ′(a) ≤ ϕ̂(ā) for some σ′ ∈ Ξ.
Hence, ā is not a local minimum of ϕ̂.
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Local minima If ‖σ‖0 = 1 and I = {i}, then the simplified objective function is

ϕ̂σ = − 1
2 〈σiι

∗s−i [ã0] ,a〉2 + λ 〈σiι∗s−i [ã0] ,a〉+ cσ. (2.49)

The minimizer appears at the boundary for 〈σiι∗s−i [ã0] ,a〉, namely ‖ι∗s−i [ã0]‖23 obtained by

ā = σi
ι∗sτ [ã0]

‖ι∗sτ [ã0]‖2
. (2.50)

It can be easily verified that

grad [ϕ̂σ] (ā) =
(
−‖ι∗sτ [ã0]‖22 + λ ‖ι∗sτ [ã0]‖2

)
× (I − āā∗) ā (2.51)

= 0 (2.52)

Hess [ϕ̂σ] (ā) = Pa⊥
(
−‖ι∗sτ [ã0]‖22 āā

∗ + (1− λ ‖ι∗sτ [ã0]‖2)I
)
Pa⊥ (2.53)

= (1− λ ‖ι∗sτ [ã0]‖2)Pa⊥Pa⊥ (2.54)
� 0 (2.55)

Global maxima If ‖σ‖0 = 0, then the objective remains constant and achieves the global maximum.

Lemma 2.2 (Continuity of the Gradient of ϕ̂) ∇ϕ̂ is a continuous function of a.

Proof Recall that for a given σ, the gradient

∇ϕ̂σ(a) = −ι∗Ča0
PIČ

∗
a0
ιa+ λι∗Ča0

PIσ (2.56)
= −ι∗Ča0PI

(
Č∗a0

ιa− λσ
)

(2.57)

This is a continuous function within the relative interior of Rσ . Next, we show this function is continuous at
the relative boundary of Rσ. Let a′ ∈ relbdy (Rσ), and σ′ = sign(a′), I = supp(σ′) are the corresponding
sign and support. Without loss of generality, we assume σ′�σ, denote a = a′+ εδ (‖δ‖2 = 1) and Iδ = I \ I ′,
then

∇ϕ̂σ(a)−∇ϕ̂σ′(a′) = −ι∗Ča0
PI
(
Č∗a0

ιa− λσ
)

+ ι∗Ča0
PI′

(
Č∗a0

ιa′ − λσ′
)

(2.58)
= −ι∗Ča0

(PI′ + PIδ)
(
Č∗a0

ιa− λσ
)

+ ι∗Ča0
PI′

(
Č∗a0

ιa′ − λσ′
)

(2.59)
= −ι∗Ča0PIδ

(
Č∗a0

ιa− λσ
)
− ει∗Ča0PI′Č

∗
a0
ιδ (2.60)

Since
∥∥PIδ (Č∗a0

ιa− λσ
)∥∥
∞ = ε

∥∥PIδČ∗a0
ιδ
∥∥
∞, we have ‖∇ϕ̂σ(a)−∇ϕ̂σ′(a′)‖∞ ≤ O(ε).

3 Proof of Lemma 3.1
Lemma 3.1 Let λrel = λ/ ‖x0‖∞, suppose the ground truth a0 satisfies

|〈a0, ιsτ 6=0 [ã0]〉| < λ2
rel −

(
2 + 1/λ2

rel

)√
1− λ2

rel (3.1)

for any nonzero shift τ , and x0 is separated enough such that any two nonzero components are at least 2k entries away
from each other. If initialized at some a ∈ Sk−1 that |〈a,a0〉| > λ/ ‖x0‖∞, a gradient descent algorithm minimizing
ϕ(a) recovers the signed ground truth ±a0.

3The other boundary point is 〈σiι∗s−i [ã0] ,a〉 = λ, which achieves a smaller objective value.
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Proof Without loss of generality, we are going to assume ‖x0‖∞ = 1 for simplicity. Given that

|〈a0, ιsτ 6=0 [ã0]〉| < λ2 −
√

1− λ2
(
2 + 1/λ2

)
(3.2)

and a = 〈a,a0〉a0 + δ with ‖δ‖2 ≤
√

1− λ2, therefore

|〈a, ιsτ [a]〉| = |〈〈a,a0〉a0 + δ, ιsτ [〈a,a0〉a0 + δ]〉|
≤ 〈a,a0〉2 |〈a0, ιsτ [a0]〉|+ 2 〈a,a0〉 ‖δ‖2 + ‖δ‖22
< 1−

√
1− λ2/λ2

Moreover, as x0 is sufficiently separated, we have

|〈a, ιsτ [a]〉 ‖x?‖∞ − 〈a, ιsτ [a0]〉 ‖x0‖∞| ≤ |〈a, ιsτ [a]〉| ‖x0 − x?‖∞ + |〈a, ιsτ [a0 − a]〉| ‖x0‖∞
< λ |〈a, ιsτ [a]〉|+ ‖a0 − a‖2 ‖x0‖∞
< λ.

Hence, there exists a unique nonzero minimizer satisfying suppx? ⊂ suppx0, and the optimality condition
for x? implies

x? = SOFTλ [〈a,a0〉x0] , (3.3)

In this case, we can calculate the Euclidean gradient

∇ϕ(a) = ιC∗x? (a~ x? − a0 ~ x0) (3.4)
= ‖x?‖22 a− 〈x

?,x0〉a0, (3.5)

and the Riemannian gradient

grad [ϕ] (a) = (I − aa∗)∇ϕ(a) (3.6)
= −〈x?,x0〉 (I − aa∗)a0. (3.7)

It’s easy to check that at any point along the geodesic curve between a0 and a, support recovery of x? is
achieved and a gradient descent algorithm moves towards the signed ground truth ±a0 as desired.

4 Auxiliary Lemmas
Lemma 4.1 (Lemma B.2 of [SQW15]) Suppose thatA � 0 is a positive definite matrix. For any symmetic matrix ∆
with ‖∆‖`2→`2 ≤ σmin(A)/2,

∥∥∥(A+ ∆)−1/2 −A−1/2
∥∥∥
`2→`2

≤
2 ‖A‖1/2`2→`2 ‖∆‖`2→`2

σmin(A)2
. (4.1)

Lemma 4.2 Let U be a matrix such that U∗U = I + ∆, with ‖∆‖`2→`2 < 1/2. Then U∗U is invertible,

‖U‖`2→`2 <
√

3/2, (4.2)

and ∥∥∥U −U(U∗U)−1/2
∥∥∥
`2→`2

< 3 ‖∆‖`2→`2 . (4.3)
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Proof Upper bound for the first quantity can be derived

‖U‖`2→`2 =
√
‖U∗U‖`2→`2 (4.4)

≤
√
‖I‖`2→`2 + ‖∆‖`2→`2 (4.5)

<
√

3/2. (4.6)

Applying Lemma 4.1 for the second term∥∥∥U −U(U∗U)−1/2
∥∥∥
`2→`2

≤ ‖U‖`2→`2
∥∥∥I − (U∗U)−1/2

∥∥∥
`2→`2

(4.7)

= ‖U‖`2→`2
∥∥∥I−1/2 − (I + ∆)−1/2

∥∥∥
`2→`2

(4.8)

≤
√

3/2× 2 ‖∆‖`2→`2 , (4.9)

Hence, we can obtain the claim by using 2
√

3/2 < 3 to simplify the constant.
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