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Abstract

This supplementary material contains a complete proof of Theorem 2.1 and Lemma 3.1 of the main paper.
Section 1 discusses some technical notations and geometric observations, Section 2 and 3 restates and shows
a complete proof for the theorem and lemma respectively, and Section 4 contains two auxiliary lemmas used
in the main proof.

1 Notations and Recaps

Before commencing our main proof, we introduce some notations, recap the simplified objective function
@ and a few basic observations on its geometry. In this note, we use C, or Cj exchangeably to denote the
m x m circulant matrix generated by a k-length short convolutional kernel a without ambiguity.

Reversed Circulant Matrix Let C’ao be the reversed circulant matrix for ag such that

Cao = [ solao] | s—1ao] | s—2[aq] | ... | s_(m-1)[a0] | € R™*™, (1.1)

Here, s, [ag] denotes a cyclic shift as defined in Equation (3) of the main paper. Since the i-th entry of C;ag
satisfies
[Caao); = (silal, ao) = (a, 5 [ao]) = (a,¢"s i [av]) , (12)

therefore following equation always holds

Cia; = C; a. (1.3)
Projection onto I Letey,...,e,,_1 denote the standard basis vectors. For index set I = {il, -~ 1\} £,
let
‘/I = [eil | e, ‘ e | ei\l\} c Rmx“" (14)
and then
P =V;V} (1.5)

denote the projection onto the coordinates indexed by I while setting other entries zero.

Partial Signed Support Letu, v be two vectors of the same dimension. If supp(u) C supp(v) and u(i)v(i) >
0 for all ¢ € supp(v), then w attains the partial signed support of v, denoted as u < v.



Piecewise Quadratic Function Let z*(a) denote the minimizer for simplified objective function
#la) = min§ |lac]; + § l|=]3 — (a ® x,d0) + A |2, , (1.6)
with sign o and support I defined as
o =sign(z*(a)) € {-1,0,1}™, I =supp(o) C {0,1,...,m—1}% (1.7)
By stationary condition for *(a), we obtain
x*(a) = SOFT, [Cjao] = SOFT, [C; wa], (1.8)
where SOFT), [u] = sign(u) max {|u| — A, 0} is the entry-wise soft-thresholding operator.
For each sign pattern o = supp(z*) € {—1,0,1}", there exists corresponding region on the sphere such

that
R, = {a | sign (SOFT, [Ozoba]) =o}. (1.9)

On the relative interior of each R, the function ¢ has a simple expression:

P(a) = Go(a) = —La"t"Ca, PiCrta+ Ao PiCE va + 5 — 211 (1.10)
Therefore, the objective function is piecewise quadratic and can be rewritten as
Po = %a*Mga +b.a+ Consty, (1.11)

with § § }
My = —1"Co,PIC, t, by = \"Cy, Pro. (1.12)

With above notations clarified, we are now ready to present a proof for the main theorem.

2 Proof of Theorem 2.1

Theorem 2.1 Let
= = {sign (SOFT, [C} ta]) |a e S"'}. 2.1)

Define T = {supp(o) | o € E}. For each nonempty I = {iy <iy < --- <ijy} €L, let

A (@] | t's_iplao] | | TSz [a] c REXII 2.2)
le=s i [ao]lly | le*s—i, [aollly || [[ers—i, [aoll,
Suppose that for every I € T of size greater than one,
)\2
IWiWi e < 5 23)

and that X < 1. Then every local minimum a of @ over S¥~1 satisfies either a € Ro (in which case @ is also a global
maximumy), or
v 57 [ao]

a=+t—"+—
le*s7 [ao] 5

(2.4)

for some shift .

1 As in the main paper, we assume that m dimensional vectors are indexed by the integers 0, 1,...,m — 1.



Proof On the relative interior of each R, the simplified objective function

$o = ta*Mya+bia+co (2.5)

has Euclidean derivative and Hessian
Vis(a) = Mya+ by, (2.6)
vz‘ﬁa’ (a) = M,. (2.7)

As we assume a to have unit Frobenius norm, or to live on a sphere, the more natural Riemannian gradient
and Hessian are defined as

grad [py] (@) = P,1Vy,(a) (2.8)
= M,a+b, —ala*M,a+ b a), (2.9)
Hess[Po] (@) = P, (v%a,(a) — (Véo(a),a) I) P, (2.10)
- P, (M,, — (a*Mya + b;a)I) P,.. 2.11)

Here, P,. = I —aa* denotes projection onto the tangent space over the sphere at a. As in the Euclidean space,
a stationary point on the sphere needs to satisfy grad [$] (@) = 0. At a stationary point a, if Hess [$,] (@)
is positive semidefinite, the function is convex and a is a local minimum; if Hess [§] (@) has a negative
eigenvalue, then there exists a direction alone which the objective value decreases and hence a is a saddle
point [AMSO07].

Let I = {i; <i» <--- <7} and define

m = |l¢fs—iaoll, Viel, (2.12)
n o= MM miy) € R (2.13)
and
U = [%L*s_il [a0] | 70275 [o]| | i i [ad] c RF> 11, (2.14)
Niy Niy i1
Here, columns of U have unit £2 norm. Then we have
M, = —Udiag(n)*U*, b, = \Un. (2.15)

As I is defined via soft thresholding, we have |[C} ta];| > A holds for every i € I. Hence,

a*Msa+bla = —a*1"Co,P;C} ta+ \o*P;C} ta (2.16)
PGl A | PGl 2.17)
< 0 (2.18)

holds atany a € cl(Ry) \ Ro.

Stationary point and implications Consider any stationary point a € cl (R, ) \ Ro of @. By continuity of
the gradient of ¢ (proved in Lemma 2.2), a is also a stationary point of ¢,. By definition, grad [¢] (@) = 0,
which implies that

(@*Mya + b.a)a = M,a + b, (2.19)
Note that since a*M,a + b}.a # 0 and b, € range(M,,), this implies that a € range(M, ).
Lety = — (a*Mya + bla) > 0, then the condition for a stationary point a becomes
va = Udiag(n)*U*a — \Un. (2.20)



Let « = U*a, and note that for each j, a; > 0 and a;7; > A. In terms of U, the stationarity condition
becomes
ya = U*Udiag(n)*a — \U*Un. (2.21)

Since the diagonal elements of U*U are all ones, and hence can be written as
U'U=1+A. (2.22)

We have
ya = diag(n)?a — A\n + A{diag(n)Qa — )\7]}. (2.23)

As a = 0 and diag(n)a > A - 1, together with an auxiliary Lemma 4.2 proved in Section 4, we have

|diag(n)’e—Anll, < e, (2.24)
= |U*al, (2.25)
< NUlpasype (2.26)
< V3/2, (2.27)
whence
|a{aiagm?a—xn}| < VBRxIA] - (2.28)

Suppose that A is small enough that the right hand side of (2.28) is bounded by A?/2, i.e.,

)\2

Al e < NG (2.29)
Plugging back into the stationary condition diag(n)?a — ya = An — A{diag(n)ga — )\n} gives
(diag(n)? —v)a = Ap — A\?/2 = 0. (2.30)
Since «; < 1 and n; > A for all 4, which implies that
Y < T — Mmin + A°/2, (2.31)
where 1y, is the smallest of the n;.
Negative curvature in Hessian Recall the Riemannian Hessian on the sphere is defined as
Hess[3o](a) = P,. (M, — (a*Mya + b;';a)I) P, (2.32)
- P, (—U diag(n)2U* + 71) P,.. (2.33)

Below argument shows that this Riemmanian Hessian has negative eigenvalues. Let U be an orthonormal
matrix generated via
U=UUuu)'? (2.34)

Whenever ||Al[,2_,,» < 1/2holds, Lemma 4.2 guarantees HU - f]H@ S 3 |A|l,2_, p2- Under this condition,
—

we can lower bound the smallest nonzero eigenvalue of U diag(n)*U*, as

)\min(U dlag(n)QU*) = Umin(U dlag(n))Q (235)

2Here, > denotes element-wise inequality between vectors.



> (max {omin (0 diag(n)) - HU - UH | diag(n)]| ,0})2 (2.36)
= (e {0 0 0}’ @
> Nlin — 3maxmin || Al g2 pe - (2.38)

Since A < Nmin < Nmax < 1, additionally if [[Al 2,2 < %, we have
3N maxmin || Al 22 < Mimin — 22, (2.39)

Together with (2.29) and (2.31), we can obtain
Amin(U diag(n)*U™) > 7, (2.40)

or
)\max(Mcr) <=7 (241)

Thus, whenever the following conditions are satisfied

2
A
A<l Allpe < 7 1Alese < & (2.42)
we have \.x (M) < —v as desired.
Above calculations imply that for every £ € range (M) C R¥,
& (My+~I)€ <O. (2.43)
Since
Hess [3o] (@) = Py (Mc, n 71) P,., (2.44)
for & € a* Nrange (M, ),
& Hess [po] (@) € < 0. (2.45)

Hence, on the relative interior relint (R, ), ¢ = @ obtains, and so this implies that for |||, > 1, there are no
local minima in relint (R ).

Relative boundaries We first note that if ||o||, = 1 and I = {4}, either R, is empty when ||¢*s_; [ag]|l, < A,
or it contains an open ball around range (M, ) (SF~! = i% Hence, if @ € relbdy (Rs) is a
stationary point and o # 0, we necessarily have |o||, > 2.

Since a is on the boundary of R, it is also in relbdy (cl (R5/)) for some ¢’ # o. Let

== {0’ | a € relbdy (cl (Ro"))} . (2.46)
Suppose that for every o’ € Z, o < ¢’. Hence, range (M,,) C range (M,) for every o’ € = and
€ Hess [py] (@) € <0, V& €range(M,), o’ € E. (2.47)

By continuity of the gradients, a is a stationary point for every p,/ such that o’ € Z. If we choose an arbitrary
nonzero £ € range(M, ), we have that for every o’ € =,

G (Poe s [a+t€]) < 3(a) — Q22). (248)

~

There exists a neighborhood N of a for which, at every a € N N Ry, §(a) = $5(a) < §(a) for some o’ € =.
Hence, a is not a local minimum of .



Local minima If ||o|, = 1 and I = {i}, then the simplified objective function is
Po = —1 (0" s_;[ag],a)’ + X {oit"s_; [ao] , a) + co (2.49)

The minimizer appears at the boundary for (0;¢*s_; [ao] , @), namely ||t*s_; [ao]||,® obtained by

a= aiisTi[i(’]. (2.50)
le*s7 [ao]ll,
It can be easily verified that

grad (o] @ = (= lvs. [@ollls + A e"s- (o) x (I —aa*)a (251)

— 0 2.52)

Hess(Bo] (@) = Par (= %5, @)1} aa” + (1= A", [@0]l1,)T) Pa: (253)

= (1= A||e" s, [@o)|ly) Pas Pos (2.54)

= 0 (2.55)

Global maxima If ||o||, = 0, then the objective remains constant and achieves the global maximum.

|
Lemma 2.2 (Continuity of the Gradient of ) V¢ is a continuous function of a.
Proof Recall that for a given o, the gradient
Véo(a) = —1*CoaoPiCh ta+ \*Cq Pio (2.56)
= —1"Co,P; (C} ta— \o) (2.57)

This is a continuous function within the relative interior of R,. Next, we show this function is continuous at
the relative boundary of R,. Let a’ € relbdy (R, ), and o’ = sign(a’), I = supp(o’) are the corresponding
sign and support. Without loss of generality, we assume o’ <o, denote a = a’ +¢d (||d]|, = 1)and I5s = I\ I,
then

V@o(a) = Vos(a') = —1*Co Pr (Chta— o) +1°Cq P (Cj ta’ — \o) (2.58)

= —1"Co,(Pr + Pyy) (Chta—Ao) +1°Cq, Pp (Cta’ — Xo')  (2.59)

= —"Cq Py, (Cita— o) —et*Co P C 16 (2.60)

Since || Py, (Cj ra — Ao)|| = €| P, C;,16]| ., we have VP, (a) — VE,(a')] o, < Ofe). ]

3 Proof of Lemma 3.1

Lemma 3.1 Let A\re; = A/ |0, suppose the ground truth ag satisfies

|<a07 LSr=£0 [O’NO}H < )‘Eel - (2 =+ 1/)\261) 1- )‘2

rel

(3.1)

for any nonzero shift T, and xg is separated enough such that any two nonzero components are at least 2k entries away
from each other. If initialized at some a € S¥~1 that |(a, ao)| > N/ ||zo|| ., a gradient descent algorithm minimizing
@(a) recovers the signed ground truth tay.

3The other boundary point is (c;¢*s_; [@g] , @) = A, which achieves a smaller objective value.



Proof Without loss of generality, we are going to assume || ||, = 1 for simplicity. Given that

(@, 5720 [@0])] < A% = V1 =22 (2+1/2%) (3.2)

and a = (a, ay) ag + 6 with ||d]|, < V1 — \?, therefore

(@, ts- [a]) [{{a, ao) ag + 9, ts; [(a, ao) ag + d])|

< {a,a0)’ [(ao, sy [ao))| + 2 (a, ao) ||8]|, + [|5]3
< 1—/1-=X2/)\?

Moreover, as x is sufficiently separated, we have

{a, 57 [al)| lzo — 27|, + [{@; es7 [ag — al)] [[@o]

(@, ts7 [a])] + [lao — all; o]l

@, es7 [a]) [l = (a, s+ [ao)) [[zolloo| <
< A
< A
Hence, there exists a unique nonzero minimizer satisfying supp £* C supp xo, and the optimality condition

for * implies
x* = SOFT) [{a,ag) xo) , (3.3)

In this case, we can calculate the Euclidean gradient

Vp(a) = Ch.(a®x* —ag® xo) (3.4)
= ||:c*H§a— (x*, o) ao, (3.5)
and the Riemannian gradient
grad[¢] (a) = (I -aa")Ve(a) (3.6)
= —(z",zo) (I —aa)ay. 3.7)

It’s easy to check that at any point along the geodesic curve between a and a, support recovery of z* is
achieved and a gradient descent algorithm moves towards the signed ground truth +a as desired. u

4 Auxiliary Lemmas

Lemma 4.1 (Lemma B.2 of [SQW15]) Suppose that A - 0 is a positive definite matrix. For any symmetic matrix A
with ||A||(2_)42 < O'rnin(A)/2r

1/2
2| Al 2 | Al yo @1

0202 T Omin(A)?

N

|+ ay1e-amr

Lemma 4.2 Let U be a matrix such that U*U = I + A, with ||A||,2_,,» < 1/2. Then U*U is invertible,

1U g2y < V/3/2, 4.2)
and
HU—U(U*U)—U2 <3 Al (4.3)
0242




Proof Upper bound for the first quantity can be derived

||U||824)€2 = ||U*UH42H@2 (4-4)
< VMl + 1Al (45)
< 32 (4.6)

Applying Lemma 4.1 for the second term

_ *rry—1/2 (TTFTT\—1/2
HU vw) | < Wl [T-@o) (4.7)
= Ul T2 = (T +A)72 f (4.8)
0202
< V3/2x2[| A, (4.9)
Hence, we can obtain the claim by using 2,/3/2 < 3 to simplify the constant.
|
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