Supplementary Material for CVPR Submission 2020

Anonymous Authors

April 10, 2017

Abstract

This supplementary material contains a complete proof of Theorem 2.1 and Lemma 3.1 of the main paper. Section 1 discusses some technical notations and geometric observations, Section 2 and 3 restates and shows a complete proof for the theorem and lemma respectively, and Section 4 contains two auxiliary lemmas used in the main proof.

1 Notations and Recaps

Before commencing our main proof, we introduce some notations, recap the simplified objective function $\hat{\varphi}$ and a few basic observations on its geometry. In this note, we use C_a or $C_{\tilde{a}}$ exchangeably to denote the $m \times m$ circulant matrix generated by a *k*-length short convolutional kernel *a* without ambiguity.

Reversed Circulant Matrix Let \check{C}_{a_0} be the reversed circulant matrix for a_0 such that

$$\check{\boldsymbol{C}}_{\boldsymbol{a}_0} = \left[s_0 \left[\widetilde{\boldsymbol{a}_0} \right] \mid s_{-1} \left[\widetilde{\boldsymbol{a}_0} \right] \mid s_{-2} \left[\widetilde{\boldsymbol{a}_0} \right] \mid \dots \mid s_{-(m-1)} \left[\widetilde{\boldsymbol{a}_0} \right] \right] \in \mathbb{R}^{m \times m}, \tag{1.1}$$

Here, $s_{\tau} [\widetilde{a_0}]$ denotes a cyclic shift as defined in Equation (3) of the main paper. Since the *i*-th entry of $C_a^* \widetilde{a_0}$ satisfies

$$\left[\boldsymbol{C}_{\boldsymbol{a}}^{*}\widetilde{\boldsymbol{a}_{0}}\right]_{i} = \left\langle s_{i}\left[\widetilde{\boldsymbol{a}}\right], \widetilde{\boldsymbol{a}_{0}}\right\rangle = \left\langle \widetilde{\boldsymbol{a}}, s_{-i}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\rangle = \left\langle \boldsymbol{a}, \boldsymbol{\iota}^{*}s_{-i}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\rangle,$$
(1.2)

therefore following equation always holds

$$\boldsymbol{C}_{\boldsymbol{a}}^{*}\widetilde{\boldsymbol{a}_{0}} = \check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*}\widetilde{\boldsymbol{a}}.$$
(1.3)

Projection onto *I* Let e_0, \ldots, e_{m-1} denote the standard basis vectors. For index set $I = \{i_1, \ldots, i_{|I|}\} \neq \emptyset$, let

$$\boldsymbol{V}_{I} \doteq \begin{bmatrix} \boldsymbol{e}_{i_{1}} \mid \boldsymbol{e}_{i_{2}} \mid \cdots \mid \boldsymbol{e}_{i_{|I|}} \end{bmatrix} \in \mathbb{R}^{m \times |I|}, \tag{1.4}$$

and then

$$\boldsymbol{P}_{I} = \boldsymbol{V}_{I} \boldsymbol{V}_{I}^{*} \tag{1.5}$$

denote the projection onto the coordinates indexed by I while setting other entries zero.

Partial Signed Support Let u, v be two vectors of the same dimension. If $supp(u) \subseteq supp(v)$ and $u(i)v(i) \ge 0$ for all $i \in supp(v)$, then u attains the partial signed support of v, denoted as $u \le v$.

Piecewise Quadratic Function Let $x^*(a)$ denote the minimizer for simplified objective function

$$\widehat{\varphi}(\boldsymbol{a}) = \min_{\boldsymbol{x}} \frac{1}{2} \|\widetilde{\boldsymbol{a}_0}\|_2^2 + \frac{1}{2} \|\boldsymbol{x}\|_2^2 - \langle \boldsymbol{a} \circledast \boldsymbol{x}, \widetilde{\boldsymbol{a}_0} \rangle + \lambda \|\boldsymbol{x}\|_1, \qquad (1.6)$$

with sign σ and support *I* defined as

 $\boldsymbol{\sigma} \doteq \operatorname{sign}\left(\boldsymbol{x}^{*}(\boldsymbol{a})\right) \in \{-1, 0, 1\}^{m}, \quad I \doteq \operatorname{supp}(\boldsymbol{\sigma}) \subseteq \{0, 1, \dots, m-1\}^{1}.$ (1.7)

By stationary condition for $\boldsymbol{x}^*(\boldsymbol{a})$, we obtain

$$\boldsymbol{x}^{*}(\boldsymbol{a}) = \text{SOFT}_{\lambda} \left[\boldsymbol{C}_{\boldsymbol{a}}^{*} \widetilde{\boldsymbol{a}}_{0} \right] = \text{SOFT}_{\lambda} \left[\check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \boldsymbol{\iota} \boldsymbol{a} \right],$$
(1.8)

where SOFT_{λ} [u] = sign(u) max { $|u| - \lambda, 0$ } is the entry-wise soft-thresholding operator.

For each sign pattern $\sigma = \operatorname{supp}(\boldsymbol{x}^*) \in \{-1, 0, 1\}^m$, there exists corresponding region on the sphere such that

$$R_{\boldsymbol{\sigma}} = \left\{ \boldsymbol{a} \mid \operatorname{sign} \left(\operatorname{SOFT}_{\lambda} \left[\check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \boldsymbol{\iota} \boldsymbol{a} \right] \right) = \boldsymbol{\sigma} \right\}.$$
(1.9)

On the relative interior of each R_{σ} , the function $\hat{\varphi}$ has a simple expression:

$$\widehat{\varphi}(\boldsymbol{a}) = \widehat{\varphi}_{\boldsymbol{\sigma}}(\boldsymbol{a}) \doteq -\frac{1}{2}\boldsymbol{a}^*\boldsymbol{\iota}^*\check{\boldsymbol{C}}_{\boldsymbol{a}_0}\boldsymbol{P}_I\check{\boldsymbol{C}}_{\boldsymbol{a}_0}^*\boldsymbol{\iota}\boldsymbol{a} + \lambda\boldsymbol{\sigma}^*\boldsymbol{P}_I\check{\boldsymbol{C}}_{\boldsymbol{a}_0}^*\boldsymbol{\iota}\boldsymbol{a} + \frac{1}{2} - \frac{\lambda^2|I|}{2}.$$
(1.10)

Therefore, the objective function is piecewise quadratic and can be rewritten as

$$\widehat{\varphi}_{\sigma} = \frac{1}{2} a^* M_{\sigma} a + b^*_{\sigma} a + Const_{\sigma}, \qquad (1.11)$$

with

$$M_{\sigma} = -\iota^* \check{C}_{a_0} P_I \check{C}_{a_0}^* \iota, \quad b_{\sigma} = \lambda \iota^* \check{C}_{a_0} P_I \sigma.$$
(1.12)

With above notations clarified, we are now ready to present a proof for the main theorem.

2 Proof of Theorem 2.1

Theorem 2.1 Let

$$\Xi = \left\{ \operatorname{sign} \left(\operatorname{SOFT}_{\lambda} \left[\check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \iota \boldsymbol{a} \right] \right) \mid \boldsymbol{a} \in \mathbb{S}^{k-1} \right\}.$$
(2.1)

Define $\mathcal{I} = {\text{supp}(\boldsymbol{\sigma}) \mid \boldsymbol{\sigma} \in \Xi}$. For each nonempty $I = {i_1 < i_2 < \cdots < i_{|I|}} \in \mathcal{I}$, let

$$\boldsymbol{W}_{I} = \left[\frac{\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{1}}\left[\widetilde{\boldsymbol{a}_{0}}\right]}{\|\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{1}}\left[\widetilde{\boldsymbol{a}_{0}}\right]\|_{2}} \middle| \frac{\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{2}}\left[\widetilde{\boldsymbol{a}_{0}}\right]}{\|\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{2}}\left[\widetilde{\boldsymbol{a}_{0}}\right]\|_{2}} \middle| \dots \left| \frac{\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{|I|}}\left[\widetilde{\boldsymbol{a}_{0}}\right]}{\|\boldsymbol{\iota}^{*} \boldsymbol{s}_{-i_{|I|}}\left[\widetilde{\boldsymbol{a}_{0}}\right]\|_{2}} \right] \in \mathbb{R}^{k \times |I|}$$
(2.2)

Suppose that for every $I \in \mathcal{I}$ of size greater than one,

$$\|\boldsymbol{W}_{I}^{*}\boldsymbol{W}_{I}-\boldsymbol{I}\|_{\ell^{2}\to\ell^{2}}<\frac{\lambda^{2}}{6}$$
(2.3)

and that $\lambda < 1$. Then every local minimum \bar{a} of $\hat{\varphi}$ over \mathbb{S}^{k-1} satisfies either $\bar{a} \in R_0$ (in which case \bar{a} is also a global maximum), or

$$\bar{\boldsymbol{a}} = \pm \frac{\boldsymbol{\iota}^* \boldsymbol{s}_\tau \left[\widetilde{\boldsymbol{a}_0} \right]}{\|\boldsymbol{\iota}^* \boldsymbol{s}_\tau \left[\widetilde{\boldsymbol{a}_0} \right] \|_2} \tag{2.4}$$

for some shift τ .

¹As in the main paper, we assume that m dimensional vectors are indexed by the integers $0, 1, \ldots, m-1$.

Proof On the relative interior of each R_{σ} , the simplified objective function

$$\widehat{\varphi}_{\sigma} = \frac{1}{2} a^* M_{\sigma} a + b^*_{\sigma} a + c_{\sigma}$$
(2.5)

has Euclidean derivative and Hessian

$$\nabla \widehat{\varphi}_{\sigma}(a) = M_{\sigma}a + b_{\sigma}, \qquad (2.6)$$

$$\nabla^2 \widehat{\varphi}_{\sigma}(a) = M_{\sigma}. \tag{2.7}$$

As we assume *a* to have unit Frobenius norm, or to live on a sphere, the more natural Riemannian gradient and Hessian are defined as

$$\operatorname{grad}\left[\widehat{\varphi}_{\sigma}\right](a) = P_{a^{\perp}} \nabla \widehat{\varphi}_{\sigma}(a)$$
(2.8)

$$= M_{\sigma}a + b_{\sigma} - a(a^*M_{\sigma}a + b^*_{\sigma}a), \qquad (2.9)$$

$$\operatorname{Hess}\left[\widehat{\varphi}_{\sigma}\right](\boldsymbol{a}) = \boldsymbol{P}_{\boldsymbol{a}^{\perp}} \left(\nabla^{2} \widehat{\varphi}_{\sigma}(\boldsymbol{a}) - \left\langle \nabla \widehat{\varphi}_{\sigma}(\boldsymbol{a}), \boldsymbol{a} \right\rangle \boldsymbol{I} \right) \boldsymbol{P}_{\boldsymbol{a}^{\perp}}$$
(2.10)

$$= P_{a^{\perp}} \Big(M_{\sigma} - (a^* M_{\sigma} a + b^*_{\sigma} a) I \Big) P_{a^{\perp}}.$$
(2.11)

Here, $P_{a^{\perp}} = I - aa^*$ denotes projection onto the tangent space over the sphere at a. As in the Euclidean space, a stationary point on the sphere needs to satisfy grad $[\widehat{\varphi}_{\sigma}](a) = 0$. At a stationary point \bar{a} , if Hess $[\widehat{\varphi}_{\sigma}](\bar{a})$ is positive semidefinite, the function is convex and \bar{a} is a local minimum; if Hess $[\widehat{\varphi}_{\sigma}](\bar{a})$ has a negative eigenvalue, then there exists a direction alone which the objective value decreases and hence \bar{a} is a saddle point [AMS07].

Let $I = \{i_1 < i_2 < \dots < i_{|I|}\}$ and define

$$\eta_i = \|\boldsymbol{\iota}^* \boldsymbol{s}_{-i} [\widetilde{\boldsymbol{a}_0}]\|_2 \quad \forall i \in I,$$
(2.12)

$$\boldsymbol{\eta} = (\eta_{i_1}, \eta_{i_2}, \dots, \eta_{i_{|I|}}) \in \mathbb{R}^{|I|}, \tag{2.13}$$

and

$$\boldsymbol{U} = \left[\frac{\sigma_{i_1}\boldsymbol{\iota}^* \boldsymbol{s}_{-i_1}\left[\widetilde{\boldsymbol{a}_0}\right]}{\eta_{i_1}} \middle| \frac{\sigma_{i_2}\boldsymbol{\iota}^* \boldsymbol{s}_{-i_2}\left[\widetilde{\boldsymbol{a}_0}\right]}{\eta_{i_2}} \middle| \dots \middle| \frac{\sigma_{i_{|I|}}\boldsymbol{\iota}^* \boldsymbol{s}_{-i_{|I|}}\left[\widetilde{\boldsymbol{a}_0}\right]}{\eta_{i_{|I|}}} \right] \in \mathbb{R}^{k \times |I|}.$$
(2.14)

Here, columns of U have unit ℓ^2 norm. Then we have

$$M_{\sigma} = -U \operatorname{diag}(\eta)^2 U^*, \quad b_{\sigma} = \lambda U \eta.$$
 (2.15)

As *I* is defined via soft thresholding, we have $|[\check{C}^*_{a_0} \iota a]_i| > \lambda$ holds for every $i \in I$. Hence,

$$a^* M_{\sigma} a + b^*_{\sigma} a = -a^* \iota^* \check{C}_{a_0} P_I \check{C}^*_{a_0} \iota a + \lambda \sigma^* P_I \check{C}^*_{a_0} \iota a$$
(2.16)

$$= - \left\| \boldsymbol{P}_{I} \check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \boldsymbol{\iota} \boldsymbol{a} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{P}_{I} \check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \boldsymbol{\iota} \boldsymbol{a} \right\|_{1}$$
(2.17)

$$< 0$$
 (2.18)

holds at any $a \in \operatorname{cl}(R_{\sigma}) \setminus R_{0}$.

Stationary point and implications Consider any stationary point $\bar{a} \in cl(R_{\sigma}) \setminus R_{0}$ of $\hat{\varphi}$. By continuity of the gradient of $\hat{\varphi}$ (proved in Lemma 2.2), \bar{a} is also a stationary point of $\hat{\varphi}_{\sigma}$. By definition, $grad [\hat{\varphi}_{\sigma}] (\bar{a}) = 0$, which implies that

$$(\bar{a}^* M_{\sigma} \bar{a} + b^*_{\sigma} \bar{a}) \bar{a} = M_{\sigma} \bar{a} + b_{\sigma}.$$
(2.19)

Note that since $\bar{a}^* M_{\sigma} \bar{a} + b_{\sigma}^* \bar{a} \neq 0$ and $b_{\sigma} \in \operatorname{range}(M_{\sigma})$, this implies that $\bar{a} \in \operatorname{range}(M_{\sigma})$. Let $\gamma = -(a^* M_{\sigma} a + b_{\sigma}^* a) > 0$, then the condition for a stationary point \bar{a} becomes

$$\gamma \bar{\boldsymbol{a}} = \boldsymbol{U} \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{U}^* \bar{\boldsymbol{a}} - \lambda \boldsymbol{U} \boldsymbol{\eta}.$$
(2.20)

Let $\alpha = U^* \bar{a}$, and note that for each j, $\alpha_j > 0$ and $\alpha_j \eta_j > \lambda$. In terms of U, the stationarity condition becomes

$$\gamma \boldsymbol{\alpha} = \boldsymbol{U}^* \boldsymbol{U} \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{\alpha} - \lambda \boldsymbol{U}^* \boldsymbol{U} \boldsymbol{\eta}.$$
(2.21)

Since the diagonal elements of U^*U are all ones, and hence can be written as

$$U^*U = I + \Delta. \tag{2.22}$$

We have

$$\gamma \boldsymbol{\alpha} = \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{\alpha} - \lambda \boldsymbol{\eta} + \boldsymbol{\Delta} \Big\{ \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{\alpha} - \lambda \boldsymbol{\eta} \Big\}.$$
(2.23)

As $\alpha \succ 0$ and diag $(\eta) \alpha \succ \lambda \cdot 1^2$, together with an auxiliary Lemma 4.2 proved in Section 4, we have

$$\left\| \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{\alpha} - \lambda \boldsymbol{\eta} \right\|_2 \leq \|\boldsymbol{\alpha}\|_2$$
(2.24)

$$= \|\boldsymbol{U}^* \bar{\boldsymbol{a}}\|_2 \tag{2.25}$$

$$\leq \|U\|_{\ell^2 \to \ell^2} \tag{2.26}$$

$$\leq \sqrt{3/2},$$
 (2.27)

whence

$$\left\| \mathbf{\Delta} \Big\{ \operatorname{diag}(\boldsymbol{\eta})^2 \boldsymbol{\alpha} - \lambda \boldsymbol{\eta} \Big\} \right\|_{\infty} \leq \sqrt{3/2} \times \left\| \mathbf{\Delta} \right\|_{\ell^2 \to \ell^{\infty}}.$$
(2.28)

Suppose that Δ is small enough that the right hand side of (2.28) is bounded by $\lambda^2/2$, i.e.,

$$\|\mathbf{\Delta}\|_{\ell^2 \to \ell^\infty} \le \frac{\lambda^2}{\sqrt{6}}.$$
(2.29)

Plugging back into the stationary condition $\operatorname{diag}(\eta)^2 \alpha - \gamma \alpha = \lambda \eta - \Delta \left\{ \operatorname{diag}(\eta)^2 \alpha - \lambda \eta \right\}$ gives

$$(\operatorname{diag}(\boldsymbol{\eta})^2 - \gamma)\boldsymbol{\alpha} \succ \lambda\boldsymbol{\eta} - \lambda^2/2 \succ \mathbf{0}.$$
 (2.30)

Since $\alpha_i < 1$ and $\eta_i > \lambda$ for all *i*, which implies that

$$\gamma < \eta_{\min}^2 - \lambda \eta_{\min} + \lambda^2/2, \tag{2.31}$$

where η_{\min} is the smallest of the η_i .

Negative curvature in Hessian Recall the Riemannian Hessian on the sphere is defined as

$$\operatorname{Hess}\left[\widehat{\varphi}_{\sigma}\right](a) = P_{a^{\perp}}\left(M_{\sigma} - (a^*M_{\sigma}a + b^*_{\sigma}a)I\right)P_{a^{\perp}}$$
(2.32)

$$= P_{a^{\perp}} \left(-U \operatorname{diag}(\eta)^2 U^* + \gamma I \right) P_{a^{\perp}}.$$
(2.33)

Below argument shows that this Riemmanian Hessian has negative eigenvalues. Let \tilde{U} be an orthonormal matrix generated via

$$\tilde{\boldsymbol{U}} \doteq \boldsymbol{U}(\boldsymbol{U}^*\boldsymbol{U})^{-1/2} \tag{2.34}$$

Whenever $\|\mathbf{\Delta}\|_{\ell^2 \to \ell^2} < 1/2$ holds, Lemma 4.2 guarantees $\|\mathbf{U} - \tilde{\mathbf{U}}\|_{\ell^2 \to \ell^2} < 3 \|\mathbf{\Delta}\|_{\ell^2 \to \ell^2}$. Under this condition, we can lower bound the smallest nonzero eigenvalue of $\mathbf{U} \operatorname{diag}(\boldsymbol{\eta})^2 \mathbf{U}^*$, as

$$A_{\min}(\boldsymbol{U}\operatorname{diag}(\boldsymbol{\eta})^{2}\boldsymbol{U}^{*}) = \sigma_{\min}(\boldsymbol{U}\operatorname{diag}(\boldsymbol{\eta}))^{2}$$
(2.35)

²Here, \succ denotes element-wise inequality between vectors.

$$\geq \left(\max\left\{ \sigma_{\min}\left(\tilde{\boldsymbol{U}}\operatorname{diag}(\boldsymbol{\eta})\right) - \left\| \boldsymbol{U} - \tilde{\boldsymbol{U}} \right\| \left\| \operatorname{diag}(\boldsymbol{\eta}) \right\|, 0 \right\} \right)^{2}$$
(2.36)

$$= \left(\max\left\{ \eta_{\min} - \left\| \boldsymbol{U} - \tilde{\boldsymbol{U}} \right\| \eta_{\max}, 0 \right\} \right)^{2}$$
(2.37)

$$\geq \eta_{\min}^2 - 3\eta_{\max}\eta_{\min} \|\mathbf{\Delta}\|_{\ell^2 \to \ell^2} \,. \tag{2.38}$$

Since $\lambda < \eta_{\min} \le \eta_{\max} \le 1$, additionally if $\|\mathbf{\Delta}\|_{\ell^2 \to \ell^2} \le \frac{\lambda}{6}$, we have

$$3\eta_{\max}\eta_{\min} \|\mathbf{\Delta}\|_{\ell^2 \to \ell^2} \le \lambda \eta_{\min} - \lambda^2/2, \tag{2.39}$$

Together with (2.29) and (2.31), we can obtain

$$\lambda_{\min}(\boldsymbol{U}\operatorname{diag}(\boldsymbol{\eta})^{2}\boldsymbol{U}^{*}) > \gamma, \qquad (2.40)$$

or

$$\lambda_{\max}(\boldsymbol{M_{\sigma}}) < -\gamma. \tag{2.41}$$

Thus, whenever the following conditions are satisfied

$$\lambda < 1, \quad \|\mathbf{\Delta}\|_{\ell^2 \to \ell^\infty} \le \frac{\lambda^2}{\sqrt{6}}, \quad \|\mathbf{\Delta}\|_{\ell^2 \to \ell^2} \le \frac{\lambda}{6}, \tag{2.42}$$

we have $\lambda_{\max}(M_{\sigma}) < -\gamma$ as desired.

Above calculations imply that for every $\boldsymbol{\xi} \in \operatorname{range}(\boldsymbol{M}_{\boldsymbol{\sigma}}) \subseteq \mathbb{R}^k$,

$$\boldsymbol{\xi}^* \left(\boldsymbol{M}_{\boldsymbol{\sigma}} + \gamma \boldsymbol{I} \right) \boldsymbol{\xi} < 0. \tag{2.43}$$

Since

Hess
$$[\widehat{\varphi}_{\sigma}](\bar{a}) = P_{\bar{a}^{\perp}} (M_{\sigma} + \gamma I) P_{\bar{a}^{\perp}},$$
 (2.44)

for $\pmb{\xi} \in \bar{\pmb{a}}^{\perp} \cap \operatorname{range}(\pmb{M_{\sigma}})$,

$$\boldsymbol{\xi}^* \operatorname{Hess}\left[\widehat{\boldsymbol{\varphi}}_{\boldsymbol{\sigma}}\right](\bar{\boldsymbol{a}}) \, \boldsymbol{\xi} < 0. \tag{2.45}$$

Hence, on the relative interior relint (R_{σ}) , $\hat{\varphi} \equiv \hat{\varphi}_{\sigma}$ obtains, and so this implies that for $\|\sigma\|_0 > 1$, there are no local minima in relint (R_{σ}) .

Relative boundaries We first note that if $\|\boldsymbol{\sigma}\|_0 = 1$ and $I = \{i\}$, either $R_{\boldsymbol{\sigma}}$ is empty when $\|\boldsymbol{\iota}^* s_{-i}[\widetilde{\boldsymbol{a}_0}]\|_2 \leq \lambda$, or it contains an open ball around range $(\boldsymbol{M}_{\boldsymbol{\sigma}}) \bigcap \mathbb{S}^{k-1} = \pm \frac{\boldsymbol{\iota}^* s_{-i}[\widetilde{\boldsymbol{a}_0}]}{\|\boldsymbol{\iota}^* s_{-i}[\widetilde{\boldsymbol{a}_0}]\|_2}$. Hence, if $\overline{\boldsymbol{a}} \in \operatorname{relbdy}(R_{\boldsymbol{\sigma}})$ is a stationary point and $\boldsymbol{\sigma} \neq \mathbf{0}$, we necessarily have $\|\boldsymbol{\sigma}\|_0 \geq 2$.

Since \bar{a} is on the boundary of R_{σ} , it is also in relbdy $(cl(R_{\sigma'}))$ for some $\sigma' \neq \sigma$. Let

$$\Xi = \{ \boldsymbol{\sigma}' \mid \bar{\boldsymbol{a}} \in \text{relbdy} \left(\text{cl} \left(R_{\boldsymbol{\sigma}'} \right) \right) \}.$$
(2.46)

Suppose that for every $\sigma' \in \Xi$, $\sigma \trianglelefteq \sigma'$. Hence, range $(M_{\sigma}) \subseteq \text{range}(M_{\sigma'})$ for every $\sigma' \in \Xi$ and

$$\boldsymbol{\xi}^* \operatorname{Hess}\left[\widehat{\varphi}_{\boldsymbol{\sigma}'}\right](\bar{\boldsymbol{a}}) \, \boldsymbol{\xi} < 0, \quad \forall \, \boldsymbol{\xi} \in \operatorname{range}(\boldsymbol{M}_{\boldsymbol{\sigma}}), \, \, \boldsymbol{\sigma}' \in \boldsymbol{\Xi}.$$
(2.47)

By continuity of the gradients, \bar{a} is a stationary point for *every* $\hat{\varphi}_{\sigma'}$ such that $\sigma' \in \Xi$. If we choose an arbitrary nonzero $\boldsymbol{\xi} \in \operatorname{range}(M_{\sigma})$, we have that for every $\sigma' \in \Xi$,

$$\widehat{\varphi}_{\sigma'}(\mathcal{P}_{\mathbb{S}^{k-1}}[\bar{\boldsymbol{a}}+t\boldsymbol{\xi}]) < \widehat{\varphi}(\bar{\boldsymbol{a}}) - \Omega(t^2).$$
(2.48)

There exists a neighborhood N of \bar{a} for which, at every $a \in N \cap R_{\sigma'}$, $\widehat{\varphi}(a) = \widehat{\varphi}_{\sigma'}(a) \leq \widehat{\varphi}(\bar{a})$ for some $\sigma' \in \Xi$. Hence, \bar{a} is not a local minimum of $\widehat{\varphi}$. **Local minima** If $\|\boldsymbol{\sigma}\|_0 = 1$ and $I = \{i\}$, then the simplified objective function is

$$\widehat{\varphi}_{\boldsymbol{\sigma}} = -\frac{1}{2} \left\langle \sigma_{i} \boldsymbol{\iota}^{*} s_{-i} \left[\widetilde{\boldsymbol{a}_{0}} \right], \boldsymbol{a} \right\rangle^{2} + \lambda \left\langle \sigma_{i} \boldsymbol{\iota}^{*} s_{-i} \left[\widetilde{\boldsymbol{a}_{0}} \right], \boldsymbol{a} \right\rangle + c_{\boldsymbol{\sigma}}.$$
(2.49)

The minimizer appears at the boundary for $\langle \sigma_i \iota^* s_{-i} [\widetilde{a_0}], a \rangle$, namely $\| \iota^* s_{-i} [\widetilde{a_0}] \|_2^3$ obtained by

$$\bar{\boldsymbol{a}} = \sigma_i \frac{\boldsymbol{\iota}^* \boldsymbol{s}_\tau \left[\widetilde{\boldsymbol{a}_0} \right]}{\|\boldsymbol{\iota}^* \boldsymbol{s}_\tau \left[\widetilde{\boldsymbol{a}_0} \right] \|_2}.$$
(2.50)

It can be easily verified that

$$\operatorname{grad}\left[\widehat{\varphi}_{\boldsymbol{\sigma}}\right]\left(\bar{\boldsymbol{a}}\right) = \left(-\left\|\boldsymbol{\iota}^{*} s_{\tau}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\|_{2}^{2} + \lambda \left\|\boldsymbol{\iota}^{*} s_{\tau}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\|_{2}\right) \times \left(\boldsymbol{I} - \bar{\boldsymbol{a}}\bar{\boldsymbol{a}}^{*}\right)\bar{\boldsymbol{a}}$$

$$(2.51)$$

$$= \mathbf{0} \tag{2.52}$$

$$\operatorname{Hess}\left[\widehat{\varphi}_{\boldsymbol{\sigma}}\right]\left(\bar{\boldsymbol{a}}\right) = \boldsymbol{P}_{\boldsymbol{a}^{\perp}}\left(-\left\|\boldsymbol{\iota}^{*}\boldsymbol{s}_{\tau}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\|_{2}^{2}\bar{\boldsymbol{a}}\bar{\boldsymbol{a}}^{*} + (1-\lambda\left\|\boldsymbol{\iota}^{*}\boldsymbol{s}_{\tau}\left[\widetilde{\boldsymbol{a}_{0}}\right]\right\|_{2}\right)\boldsymbol{I}\right)\boldsymbol{P}_{\boldsymbol{a}^{\perp}}$$
(2.53)

$$= (1 - \lambda \| \boldsymbol{\iota}^* \boldsymbol{s}_{\tau} [\widetilde{\boldsymbol{a}_0}] \|_2) \boldsymbol{P}_{\boldsymbol{a}^{\perp}} \boldsymbol{P}_{\boldsymbol{a}^{\perp}}$$
(2.54)

$$\geq 0$$
 (2.55)

Global maxima If $\|\boldsymbol{\sigma}\|_0 = 0$, then the objective remains constant and achieves the global maximum.

Lemma 2.2 (Continuity of the Gradient of $\hat{\varphi}$) $\nabla \hat{\varphi}$ *is a continuous function of a.*

Proof Recall that for a given σ , the gradient

$$\nabla \widehat{\varphi}_{\sigma}(a) = -\iota^* \check{C}_{a_0} P_I \check{C}^*_{a_0} \iota a + \lambda \iota^* \check{C}_{a_0} P_I \sigma$$
(2.56)

$$= -\iota^* \check{C}_{a_0} P_I \left(\check{C}^*_{a_0} \iota a - \lambda \sigma \right)$$
(2.57)

This is a continuous function within the relative interior of R_{σ} . Next, we show this function is continuous at the relative boundary of R_{σ} . Let $a' \in \operatorname{relbdy}(R_{\sigma})$, and $\sigma' = \operatorname{sign}(a')$, $I = \operatorname{supp}(\sigma')$ are the corresponding sign and support. Without loss of generality, we assume $\sigma' \leq \sigma$, denote $a = a' + \varepsilon \delta$ ($\|\delta\|_2 = 1$) and $I_{\delta} = I \setminus I'$, then

$$\nabla \widehat{\varphi}_{\sigma}(a) - \nabla \widehat{\varphi}_{\sigma'}(a') = -\iota^* \check{C}_{a_0} P_I \left(\check{C}^*_{a_0} \iota a - \lambda \sigma \right) + \iota^* \check{C}_{a_0} P_{I'} \left(\check{C}^*_{a_0} \iota a' - \lambda \sigma' \right)$$
(2.58)

$$= -\iota^* \check{C}_{a_0} (P_{I'} + P_{I_{\delta}}) \left(\check{C}^*_{a_0} \iota a - \lambda \sigma \right) + \iota^* \check{C}_{a_0} P_{I'} \left(\check{C}^*_{a_0} \iota a' - \lambda \sigma' \right)$$
(2.59)

$$-\iota^* \check{\boldsymbol{C}}_{\boldsymbol{a}_0} \boldsymbol{P}_{I_{\delta}} \left(\check{\boldsymbol{C}}^*_{\boldsymbol{a}_0} \iota \boldsymbol{a} - \lambda \boldsymbol{\sigma} \right) - \varepsilon \iota^* \check{\boldsymbol{C}}_{\boldsymbol{a}_0} \boldsymbol{P}_{I'} \check{\boldsymbol{C}}^*_{\boldsymbol{a}_0} \iota \boldsymbol{\delta}$$
(2.60)

Since $\left\| \boldsymbol{P}_{I_{\delta}} \left(\check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \iota \boldsymbol{a} - \lambda \boldsymbol{\sigma} \right) \right\|_{\infty} = \varepsilon \left\| \boldsymbol{P}_{I_{\delta}} \check{\boldsymbol{C}}_{\boldsymbol{a}_{0}}^{*} \iota \boldsymbol{\delta} \right\|_{\infty}$, we have $\left\| \nabla \widehat{\varphi}_{\boldsymbol{\sigma}}(\boldsymbol{a}) - \nabla \widehat{\varphi}_{\boldsymbol{\sigma}'}(\boldsymbol{a}') \right\|_{\infty} \leq \mathcal{O}(\varepsilon)$.

3 Proof of Lemma 3.1

Lemma 3.1 Let $\lambda_{rel} = \lambda / \| \boldsymbol{x}_0 \|_{\infty}$, suppose the ground truth \boldsymbol{a}_0 satisfies

=

$$|\langle \boldsymbol{a}_0, \boldsymbol{\iota} \boldsymbol{s}_{\tau\neq 0} \left[\widetilde{\boldsymbol{a}_0} \right] \rangle| < \lambda_{rel}^2 - \left(2 + 1/\lambda_{rel}^2 \right) \sqrt{1 - \lambda_{rel}^2}$$

$$(3.1)$$

for any nonzero shift τ , and \mathbf{x}_0 is separated enough such that any two nonzero components are at least 2k entries away from each other. If initialized at some $\mathbf{a} \in \mathbb{S}^{k-1}$ that $|\langle \mathbf{a}, \mathbf{a}_0 \rangle| > \lambda / ||\mathbf{x}_0||_{\infty}$, a gradient descent algorithm minimizing $\varphi(\mathbf{a})$ recovers the signed ground truth $\pm \mathbf{a}_0$.

³The other boundary point is $\langle \sigma_i \iota^* s_{-i} [\widetilde{a_0}], a \rangle = \lambda$, which achieves a smaller objective value.

Proof Without loss of generality, we are going to assume $\|\boldsymbol{x}_0\|_{\infty} = 1$ for simplicity. Given that

$$|\langle \boldsymbol{a}_0, \boldsymbol{\iota} \boldsymbol{s}_{\tau\neq 0} \left[\widetilde{\boldsymbol{a}_0} \right] \rangle| < \lambda^2 - \sqrt{1 - \lambda^2} \left(2 + 1/\lambda^2 \right)$$
(3.2)

and $m{a}=\langlem{a},m{a}_0
angle\,m{a}_0+m{\delta}$ with $\|m{\delta}\|_2\leq\sqrt{1-\lambda^2}$, therefore

$$egin{array}{rl} |\langle m{a},m{\iota}s_{ au}\left[m{a}
ight]
angle &=& |\langle\langlem{a},m{a}_0
anglem{a}_0+m{\delta},m{\iota}s_{ au}\left[\langlem{a},m{a}_0
anglem{a}_0+m{\delta}
ight]
angle | \ &\leq& \langlem{a},m{a}_0
angle^2\left|\langlem{a}_0,m{\iota}s_{ au}\left[m{a}_0
ight]
angle
ight|+2\left\langlem{a},m{a}_0
ight
angle\|m{\delta}\|_2+\|m{\delta}\|_2^2 \ &<& 1-\sqrt{1-\lambda^2}/\lambda^2 \end{array}$$

Moreover, as x_0 is sufficiently separated, we have

$$egin{array}{lll} \left|\left\langle m{a},m{\iota}s_{ au}\left[m{a}
ight
ight
ight
angle \left\|m{x}^{\star}
ight\|_{\infty} - \left\langlem{a},m{\iota}s_{ au}\left[m{a}_{0}
ight
ight
angle
ight
angle &\leq \left|\left\langlem{a},m{\iota}s_{ au}\left[m{a}
ight
angle
ight
angle \left\|m{x}_{0}
ight\|_{\infty} + \left|\left\langlem{a},m{\iota}s_{ au}\left[m{a}_{0}-m{a}
ight
angle
ight
angle \left\|m{x}_{0}
ight
angle_{\infty} \\ &< \left.\lambda\left|\left\langlem{a},m{\iota}s_{ au}\left[m{a}
ight
angle
ight
angle + \left\|m{a}_{0}-m{a}
ight\|_{2}\left\|m{x}_{0}
ight
angle_{\infty} \\ &< \left.\lambda
ight
angle \end{array}$$

Hence, there exists a unique nonzero minimizer satisfying $\operatorname{supp} x^* \subset \operatorname{supp} x_0$, and the optimality condition for x^* implies

$$\boldsymbol{x}^{\star} = \text{SOFT}_{\lambda} \left[\left\langle \boldsymbol{a}, \boldsymbol{a}_{0} \right\rangle \boldsymbol{x}_{0} \right], \tag{3.3}$$

In this case, we can calculate the Euclidean gradient

$$\nabla \varphi(\boldsymbol{a}) = \boldsymbol{\iota} \boldsymbol{C}_{\boldsymbol{x}^{\star}}^{*} \left(\boldsymbol{a} \circledast \boldsymbol{x}^{\star} - \boldsymbol{a}_{0} \circledast \boldsymbol{x}_{0} \right)$$
(3.4)

$$= \|\boldsymbol{x}^{\star}\|_{2}^{2} \boldsymbol{a} - \langle \boldsymbol{x}^{\star}, \boldsymbol{x}_{0} \rangle \boldsymbol{a}_{0}, \qquad (3.5)$$

and the Riemannian gradient

$$\operatorname{grad}[\varphi](\boldsymbol{a}) = (\boldsymbol{I} - \boldsymbol{a}\boldsymbol{a}^*)\nabla\varphi(\boldsymbol{a})$$
(3.6)

$$= -\langle \boldsymbol{x}^{\star}, \boldsymbol{x}_{0} \rangle (\boldsymbol{I} - \boldsymbol{a}\boldsymbol{a}^{*}) \boldsymbol{a}_{0}. \tag{3.7}$$

It's easy to check that at any point along the geodesic curve between a_0 and a, support recovery of x^* is achieved and a gradient descent algorithm moves towards the signed ground truth $\pm a_0$ as desired.

4 Auxiliary Lemmas

Lemma 4.1 (Lemma B.2 of [SQW15]) Suppose that $\mathbf{A} \succ \mathbf{0}$ is a positive definite matrix. For any symmetric matrix Δ with $\|\Delta\|_{\ell^2 \to \ell^2} \leq \sigma_{\min}(\mathbf{A})/2$,

$$\left\| (\boldsymbol{A} + \boldsymbol{\Delta})^{-1/2} - \boldsymbol{A}^{-1/2} \right\|_{\ell^2 \to \ell^2} \leq \frac{2 \left\| \boldsymbol{A} \right\|_{\ell^2 \to \ell^2}^{1/2} \left\| \boldsymbol{\Delta} \right\|_{\ell^2 \to \ell^2}}{\sigma_{\min}(\boldsymbol{A})^2}.$$
(4.1)

Lemma 4.2 Let U be a matrix such that $U^*U = I + \Delta$, with $\|\Delta\|_{\ell^2 \to \ell^2} < 1/2$. Then U^*U is invertible,

$$\|\boldsymbol{U}\|_{\ell^2 \to \ell^2} < \sqrt{3/2},\tag{4.2}$$

and

$$\left\| U - U (U^* U)^{-1/2} \right\|_{\ell^2 \to \ell^2} < 3 \left\| \Delta \right\|_{\ell^2 \to \ell^2}.$$
(4.3)

Proof Upper bound for the first quantity can be derived

$$\|\boldsymbol{U}\|_{\ell^2 \to \ell^2} = \sqrt{\|\boldsymbol{U}^*\boldsymbol{U}\|_{\ell^2 \to \ell^2}}$$
(4.4)

$$\leq \sqrt{\|\boldsymbol{I}\|_{\ell^2 \to \ell^2} + \|\boldsymbol{\Delta}\|_{\ell^2 \to \ell^2}} \tag{4.5}$$

$$< \sqrt{3/2}.$$
 (4.6)

Applying Lemma 4.1 for the second term

$$\left\| \boldsymbol{U} - \boldsymbol{U} (\boldsymbol{U}^* \boldsymbol{U})^{-1/2} \right\|_{\ell^2 \to \ell^2} \leq \| \boldsymbol{U} \|_{\ell^2 \to \ell^2} \left\| \boldsymbol{I} - (\boldsymbol{U}^* \boldsymbol{U})^{-1/2} \right\|_{\ell^2 \to \ell^2}$$
(4.7)

$$= \|\boldsymbol{U}\|_{\ell^2 \to \ell^2} \left\| \boldsymbol{I}^{-1/2} - (\boldsymbol{I} + \boldsymbol{\Delta})^{-1/2} \right\|_{\ell^2 \to \ell^2}$$
(4.8)

$$\leq \sqrt{3/2} \times 2 \left\| \mathbf{\Delta} \right\|_{\ell^2 \to \ell^2}, \tag{4.9}$$

Hence, we can obtain the claim by using $2\sqrt{3/2} < 3$ to simplify the constant.

References

- [AMS07] P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, Princeton, NJ, USA, 2007.
- [SQW15] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere. Preprint, http://arxiv.org/ abs/1504.06785, 2015.