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1. Proof of Proposition in Section 3.5.2
Proposition. Given a SPD matrix Xd×d, let U = [u1,u2, · · · ,ud] and D = diag(λ1, λ2, · · · , λd) denote the eigenvec-
tor and eigenvalue matrices in full, respectively. Let α = [α1, α2, · · · , αd]

> be the power of the eigenvalues of X, i.e.,
X(α) = UDαU>, and vec(·) denote the vectorisation of a matrix. It can be shown that vec(log(X(α))) = Γα, where
Γ = [v1,v2, · · · ,vd] and vi ≡ vec((log λi)uiu

>
i ), vi ∈ Rd2

. The columns of Γ form a set of d orthogonal bases spanning
a d-dimensional subspace V in the whole space of Rd2

.

Proof. By eigen-decomposition, we have X = UDU> = λ1u1u
>
1 + λ2u2u

>
2 + · · · + λdudu

>
d . It is easy to obtain

that log(X) = U log[D]U> =
∑d

i=1(log λi)uiu
>
i and log(X(α)) =

∑d
i=1(αi log λi)uiu

>
i , where log[D] denotes the

diagonal matrix obtained after applying the natural logarithm to the diagonal elements of D (The square bracket [·] is used to
differentiate it from the matrix logarithm). Therefore, it holds that

vec(log(X(α))) = vec
(
(α1 log λ1)u1u

>
1

)
+ · · ·+ vec

(
(αd log λd)udu

>
d

)
(1)

= α1v1 + · · ·+ αdvd

= Γα.

Now let’s prove that {v1,v2, · · · ,vd} forms a set of d orthogonal bases for a d-dimensional subspace (denoted by V) in
Rd2

, that is, 〈vi,vj〉 = 0, for all 1 < i < j < d.
It can be shown that

〈vi,vj〉 = 〈vec
(
(log λi)uiu

>
i

)
, vec

(
(log λj)uju

>
j

)
〉 (2)

= 〈(log λi)uiu
>
i , (log λj)uju

>
j 〉F

(∵ 〈A,B〉F = trace(A>B))

= trace((log λi)uiu
>
i (log λj)uju

>
j )

= (log λi log λj)trace(uiu
>
i uju

>
j )

(∵ u>i uj = 0 as two eigenvectors)
= 0.

In addition, it is trivial to show that ‖vi‖2 = (log λi)
2. Therefore, {v1,v1, · · · ,vd} forms a set of d orthogonal bases for a

subspace V in Rd2

. �
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2. Fifteen most difficult texture pairs in Brodatz data set used in Section 4.1

Pair 1: 30 vs. 31 Pair 2: 43 vs. 44 Pair 3: 23 vs. 27 Pair 4: 28 vs. 73 Pair 5: 30 vs. 91

Pair 6: 58 vs. 89 Pair 7: 30 vs. 88 Pair 8: 7 vs. 89 Pair 9: 31 vs. 91 Pair 10: 31 vs. 88

Pair 11: 30 vs. 90 Pair 12: 59 vs. 61 Pair 13: 27 vs. 99 Pair 14: 42 vs. 62 Pair 15: 31 vs. 99

Figure 1. Fifteen most difficult texture pairs (with class labels) used in the binary classification experiment from Brodatz data set in Section
4.1.


