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1. Proof of Proposition in Section 3.5.2

Proposition. Given a SPD matrix X x4, let U = [uj,ug, -+ ,ug] and D = diag(A1, A2, -+, Ag) denote the eigenvec-
tor and eigenvalue matrices in full, respectively. Let o = [ay,ag,--+ ,aq4]" be the power of the eigenvalues of X, i.e.,
X(a) = UD*UT, and vec(-) denote the vectorisation of a matrix. It can be shown that vec(log(X(ax))) = T'cx, where
T = [vi,va, -+ ,vg4] and v; = vec((log \;)u;u, ), v; € RY”. The columns of T' form a set of d orthogonal bases spanning
a d-dimensional subspace V in the whole space of R,

Proof. By eigen-decomposition, we have X = UDUT = )\1u1u1T + A2u2u; + -4 )\dudu;lr. It is easy to obtain
that log(X) = Ulog[D]UT = Z?Zl(log Ai)uu! and log(X(ar)) = Z?Zl(a,; log A\;)u;u;, where log[D] denotes the
diagonal matrix obtained after applying the natural logarithm to the diagonal elements of D (The square bracket [-] is used to
differentiate it from the matrix logarithm). Therefore, it holds that

vec(log(X(a))) = vec((aylog /\1)u1u1r) + -+ + vec ((aqlog )\d)udu:l—) (1)
= Vi + -+ agvg
= Ta.
Now let’s prove that {vy,vs,- - ,v4} forms a set of d orthogonal bases for a d-dimensional subspace (denoted by V) in

R, that is, (v, v;) = 0, forall 1 <i < j < d.
It can be shown that

(vi,vj) = (vec ((log )\i)uiu;r) ,vec ((log )\j)uju;r)> 2)
((log Ai)u;u/, (log A\j)uju) ) g

(. (A,B)p = trace(A ' B))

trace((log \; )u;u; (log /\j)ujujT)

)

(log \i log \j)trace(u;u; uju
(- ujuj = 0 as two eigenvectors)
= 0.

In addition, it is trivial to show that ||v;||? = (log A;)2. Therefore, {v1, vy, - ,v4} forms a set of d orthogonal bases for a
subspace V in R, O



2. Fifteen most difficult texture pairs in Brodatz data set used in Section 4.1
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Figure 1. Fifteen most difficult texture pairs (with class labels) used in the binary classification experiment from Brodatz data set in Section
4.1.



