000		054
001		055
002		056
003		057
004		058
005		059
006		060
007		061
800		062
009		063
010		064
011		065
012		066
013		067
014		068
015		069
010		070
010		071
010		072
019		073
020	Supplementary material:	074
021		075
022		070
023	A Non-local Low-Rank Framework for Ultrasound Speckle Reduction	078
024	ľ	070
025		080
027	Anonymous CVPR submission	081
028		082
029	Depart ID 2205	083
030	Paper ID 2595	084
031		085
032		086
033		087
034		088
035		089
036		090
037		091
038		092
039		093
040		094
041		095
042		096
043		097
044		098
045		099
046		100
047		101
048		102
049		103
050		104
051		105
052		106
053		107

There are four parts in this supplementary material:	
• The first part (part 1) presents the details of the optimization procedure	
• The second part (part 2) presents additional comparison results again the-art methods.	st state-of-
• The third part (part 3) presents additional despeckled results produced method.	d from our
• The last part (part 4) presents additional segmentation results with com	parison.
Note that all the clinical images presented in this work are obtained from	the public
ultrasound data sat downloaded from the following webpage:	me puene
unasound data set downloaded nom the following webpage.	
http://www.ultrasoundcases.info.	

Part 1. Details of Our Optimization Method

In this part, we present how we iteratively solve (minimize) the low-rank recovery model presented in Eq. 10 of our submitted paper.

Rewriting the Low-rank Recovery Model. First, according to the definition of w_i (see Eq. 7 in our paper), we set w_i to be zero for those smallest singular values, and there are λ of them. Hence, we can re-write the truncated and weighted nuclear norm (TWNN) by skipping the first λ terms in Eq. 7 in the paper as

$$||\Psi_D||_{\tilde{tw}} = \sum_{i=\lambda+1}^M w_i \sigma_i(\Psi_D),\tag{1}$$

where Ψ_D is the low-rank component of input Ψ_I (see paper); M is the total number of the singular values of Ψ_D ; and w_i is the weight on the *i*-th singular value σ_i of Ψ_D .

Next, we can devise an alternating direction method of multipliers (ADMM) method to solve our low-rank recovery model (after substituting Eq. 1 above into Eq. 10 in our submitted paper):

$$\min_{\Psi_D, \Psi_\eta} ||\Psi_D||_{\tilde{tw}} + \alpha \sum_{g \in \Psi_\eta} ||g||_{\infty} + \langle Y, \Psi_I - \Psi_D - \Psi_\eta \rangle + \beta ||\Psi_I - \Psi_D - \Psi_\eta||_F^2,$$
(2)

where $||.||_F$ is the Frobenious norm; α is a parameter set to be 1.0 in the current implementation; g is each 3×3 submatrix in Ψ_{η} (see paper); Y is the Lagrange multiplier; β is a parameter set to 2; and $\langle . \rangle$ denotes the inner product. Note that we set the initial values of Ψ_D and Ψ_{η} as Ψ_I and a zero matrix, respectively, and Y as:

$$Y_0 = \operatorname{sgn}(\Psi_I) / \max(||\operatorname{sgn}(\Psi_I)||_2, \lambda^{-1} ||\operatorname{sgn}(\Psi_I)||_{\infty}), \qquad (3)$$

where sgn is the sign function; and $||.||_{\infty}$ denotes the maximum absolute value of all the matrix elements. For details about this initialization, readers may refer to [6, 5].

The core idea of the ADMM is to separate the optimization in Eq. 2 above into two subproblems, and then to solve them iteratively by updating Ψ_D and Ψ_η alternatively.

Subproblem 1: Update $(\Psi_D)_{t+1}$: Given $(\Psi_\eta)_t$ and Y_t , we compute $(\Psi_D)_{t+1}$ by solving (minimizing) the following objective function:

$$\min_{\Psi_D} \sum_{i=\lambda+1}^{M} ||\Psi_D||_{\tilde{tw}} + \frac{\beta}{2} ||\Psi_I - \Psi_D - (\Psi_\eta)_t - \frac{1}{\beta} Y_t||_F^2 .$$
(4)

To solve Eq. 4, we need to expand the nonlinear term $||\Psi_D||_{\tilde{tw}}$. Regarding this, we first prove the following inequality, which is a generalization of Theorem 3.1 in [12]:

To prove: For any given matrix $X \in \mathbb{R}^{m \times n}$, any matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times n}$, such that $AA^T = \mathbb{I}$ and $BB^T = \mathbb{I}$, and any diagonal matrix $Q \in \mathbb{R}^{n \times n}$, for non-negative integer r = rank(A) = rank(B) (where $0 \le r \le min(m, n)$), we have

$$\operatorname{Tr}(AXQB^{T}) \leq \sum_{i=1}^{r} \rho_{i}\sigma_{i}(X) , \qquad (5)$$

where $\sigma_i(X)$ is the *i*-th singular value of X; and $\rho_1, ..., \rho_n$ are diagonal elements in Q.

Proof: We start from the left hand side of Eq. 5:

$$\operatorname{Tr}(AXQB^{T}) = \operatorname{Tr}(XQB^{T}A) \quad \text{(by trace rule: } \operatorname{Tr}(M_{1}M_{2}) = \operatorname{Tr}(M_{2}M_{1})\text{)}$$

$$\leq |\operatorname{Tr}(XQB^{T}A)| \quad (\text{since } x \leq |x| \text{ for any scalar } x)$$

$$\leq \sum_{i=1}^{\min(m,n)} \sigma_{i}(X)\sigma_{i}(QB^{T}A) \quad \text{(by Von Neumann's trace inequality [9])}$$
(6)

By singular value decomposition, we know that the non-zero singular values of a matrix (say M) are the square roots of the non-zero eigenvalues of MM^* , where M^* denotes conjugate transpose. Since QB^TA is a real matrix, $(QB^TA)^*$ is just $(QB^TA)^T$.

Let q be the rank of matrix QB^TA , where $q \leq r$. The nonzero $\sigma_i(QB^TA)$ values are the square roots of the non-zero eigenvalues of $(QB^TA)(QB^TA)^T$, which is $QB^TAA^TBQ^T$. Since $AA^T = \mathbb{I}$ and $BB^T = \mathbb{I}$, $QB^TAA^TBQ^T$ is simply a diagonal matrix whose elements are ρ_1^2 , ..., ρ_n^2 . As a result, the nonzero $\sigma_i(QB^TA)$'s are ρ_1 , ..., ρ_q (for $i \in [1, q]$), and the rest ([q + 1, n]) are zeros.

CVPR #2395

 $\operatorname{Tr}(AXQB^{T}) \leq \sum_{i=1}^{\min(m,n)} \sigma_{i}(X)\sigma_{i}(QB^{T}A) \quad (\text{from } Eq. \ \mathbf{6})$

Therefore, putting this result into Eq. 6, we can obtain

(7)

This proves Eq. 5. Moreover, following [12], $Tr(AXQB^T)$ attains maximum when

 $= \sum_{i=1}^{q} \sigma_i(X)\rho_i + \sum_{i=a\perp 1}^{\min(m,n)} \sigma_i(X) \cdot 0$

 $\leq \sum_{i=1}^{r} \sigma_i(X) \rho_i \quad (\text{since } q \leq r \text{ and } \rho_i \geq 0) \ .$

$$A = (\sqrt{\rho_1}u_1, \dots, \sqrt{\rho_r}u_r, \mathbf{0})^T \text{ and } B = (\sqrt{\rho_1}v_1, \dots, \sqrt{\rho_r}v_r, \mathbf{0})^T.$$
(8)

 $= \sum_{i=1}^{q} \sigma_i(X)\sigma_i(QB^T A) + \sum_{i=q+1}^{m} \sigma_i(X)\sigma_i(QB^T A)$

where $U_1 \Sigma_1 V_1$ is the singular value decomposition (SVD) of X; $U_1 = (u_1, \ldots, u_{min(m,n)})$; $V_1 = (v_1, \ldots, v_{min(m,n)})$; and Σ_1 is a diagonal matrix [End of Proof].

By setting X as Ψ_D and ρ_i in Q as

$$\rho_i = \frac{\theta\sqrt{K+1}}{\sqrt{\sigma_i(\Psi_D)} + \varepsilon} , \qquad (9)$$

where θ , K and ε are defined in paper, we can employ Eq. 5 and rewrite TWNN of Eq. 1 as:

 $||\Psi_D||_{\tilde{tw}} = \sum_{i=\lambda+1}^{M} w_i \sigma_i(\Psi_D) \quad (\text{by } Eq. 1)$

$$=\sum_{\substack{i=1\\M}}^{M} \rho_i \sigma_i(\Psi_D) - \sum_{\substack{i=1\\M}}^{\Lambda} \rho_i \sigma_i(\Psi_D)$$
(10)

$$\approx \sum_{i=1}^{M} \rho_i \sigma_i(\Psi_D) - \max_{AA^T = \mathbb{I}, BB^T = \mathbb{I}} \operatorname{Tr}(A\Psi_D Q B^T), \quad (\text{by } Eq. 5)$$

From Eq. 7 in paper, $\rho_i = w_i$ when $i \ge \lambda + 1$. By replacing TWNN of Eq. 1 with

CVPR #2395

Eq. 10, we can reformulate the optimization in Eq. 4 as

$$\min_{\Psi_D} \sum_{i=1}^{M} \rho_i \sigma_i(\Psi_D) - \max_{AA^T = \mathbb{I}, BB^T = \mathbb{I}} \operatorname{Tr}(A\Psi_D Q B^T) + \frac{\beta}{2} ||\Psi_I - \Psi_D - (\Psi_\eta)_t - \frac{1}{\beta} Y_t ||_F^2.$$
(11)

According to [12], we can solve Eq. 11 by an efficient two-step scheme to update Ψ_D , and (A, B) in an iterative manner. In the *j*-th $(j \in [1, J])$ iteration, the two-step scheme is described as:

Step 1.1 Let Θ_j be $(\Psi_D)_{t+1}$ in the *j*-th iteration, and $[(U_2)_j(\Sigma_2)_j(V_2)_j] = \text{svd}(\Theta_j)$, where $(U_2)_j = (u_1, \dots, u_M)^T$ and $(V_2)_j = (v_1, \dots, v_M)^T$. Then we can estimate A_j and B_j using the following equation:

$$A_j = (\sqrt{\rho_1}u_1, \dots, \sqrt{\rho_\lambda}u_\lambda, \mathbf{0})^T \text{ and } B_j = (\sqrt{\rho_1}v_1, \dots, \sqrt{\rho_\lambda}v_\lambda, \mathbf{0})^T.$$
(12)

Step 1.2 After obtaining A_j and B_j in Step 1.1, Θ_{j+1} at the (j+1)-th iteration is computed as:

$$\min_{\Psi_D} \sum_{i=1}^{M} \rho_i \sigma_i(\Psi_D) - \operatorname{Tr}(A_j \Psi_D Q B_j^T) + \frac{\beta}{2} ||\Psi_I - \Psi_D - (\Psi_\eta)_t - \frac{1}{\beta} Y_t ||_F^2.$$
(13)

Now, we can employ the accelerated proximal gradient line search method (APGL) [12] to minimize Eq. 13 above. Let $f(\Psi_D) = -\text{Tr}(A\Psi_DQB^T) + \frac{\beta}{2}||\Psi_I - \Psi_D - (\Psi_\eta)_t - \frac{1}{\beta}Y_t||_F^2$, and $e(\Psi_D) = \sum_{i=1}^M \rho_i \sigma_i(\Psi_D)$. For a given paramter s > 0, by introducing an auxiliary variable Z, APGL method constructs an approximation of Eq. 13 as:

$$Q(\Psi_D, Z) = f(Z) + \langle \Psi_D - Z, \nabla f(Z) \rangle + \frac{1}{2s} ||\Psi_D - Z||_F^2 + e(\Psi_D).$$
(14)

Then, APGL method uses another iteration $(k \in [1, K_2])$ to iteratively update Ψ_D , Z and s. The initial value of Z and s are set as Θ_i and 1, respectively. Assuming that Γ_k

is the k-th iteration for computing Θ_{i+1} , Γ_{k+1} in the (k+1)-th iteration is computed as: $\Gamma_{k+1} = \arg\min_{\Psi_D} Q(\Psi_D, Z_k) \quad (\text{from } Eq. \ \mathbf{14})$ $= \langle \Psi_D - Z_k, \nabla f(Z_k) \rangle + \frac{1}{2c_k} ||\Psi_D - Z_k||_F^2 + g(\Psi_D)|$ (by removing terms with Z_k from Eq. 14) $= \arg \min_{\Psi_D} \frac{1}{2s_k} ||\Psi_D - (Z_k - s_k \nabla f(Z_k))||_F^2 + \sum_{j=1}^{M} \rho_j \sigma_j(\Psi_D)$ (15) $\left(\text{by adding } \frac{s_k (\nabla f(Z_k))^2}{2} \right)$ $= \arg\min_{\Psi_D} \frac{1}{2s_k} ||\Psi_D - \Re_k||_F^2 + \sum_{i=1}^M \rho_i \sigma_i(\Psi_D) , \quad (\text{by calculating } \nabla f(Z_k))$ where $\Re_k = Z_k + s_k (A_j^T B_j Q^T - \frac{\beta}{2} (\Psi_I - (\Psi_\eta)_t - \frac{1}{\beta} Y_t))$. Now, according to [3], the closed-formed solution of Eq. 15 is given by: $\begin{cases} (U_3, \Sigma_3, V_3) = \operatorname{svd}(\Re_k) \\ (\Gamma)_{k+1} = U_3(\Omega(\Sigma_3))V_3^T \end{cases},$ (16)where the singular value shrinkage operator $\Omega(\Sigma_3)_{ii}$ is: $\Omega(\Sigma_3)_{ii} = \max(\Sigma_{ii} - 2\rho_i s_k, 0),$ (17)where Σ_{ii} is the *i*-th largest singular values in the diagonal matrix Σ_3 . Meanwhile, according to [4] [12], Z_{k+1} and s_{k+1} are computed as:

$$Z_{k+1} = \Gamma_{k+1} + \frac{s_k - 1}{s_k} (\Gamma_{k+1} - \Gamma_k), \text{ and } s_{k+1} = \frac{1 + \sqrt{1 + 4(s_k)^2}}{2}.$$
 (18)

Subproblem 2: Update $(\Psi_{\eta})_{t+1}$: Given $(\Psi_D)_{t+1}$ and Y_t , $(\Psi_{\eta})_{t+1}$ is updated by the minimization below:

$$\min_{\Psi_{\eta}} \alpha \sum_{g \in \Psi_{\eta}} ||g||_{\infty} + \frac{\beta}{2} ||\Psi_{I} - (\Psi_{D})_{t+1} - \Psi_{\eta} - \frac{1}{\beta} Y_{t}||_{F}^{2} , \qquad (19)$$

where α and g are defined in Eq. 10 of our paper. According to [7], the solution of Eq. 19 is the proximal operator related with a structured sparsity-inducing norm,

npı	it: a patch group matrix Ψ_I from input image
1: f	or t=0: T do
2:	for j=0: <i>J</i> do
3:	compute A_i and B_i using Eq. 12
4:	for $k=0:K_2$ do
5:	update Γ_{k+1} using Eq. 16
6:	update Z_{k+1} and s_{k+1} using Eq. 18
7:	end for
8:	end for
9:	compute $(\Psi_n)_{t+1}$ by solving Eq. 19 using the method proposed in [7]
10:	$Y_{t+1} = Y_t + \rho(\Psi_I - (\Psi_D)_{t+1} - (\Psi_n)_{t+1})$
11: e	and for
Dut	put: Ψ_D

polynomial time. Algorithm 1 summaries the whole procedure for the low-rank matrix recovery. For all the experiments, we empirically set both J and K_2 as 2, and T as [3, 10], with a large T for a high speckle noise level in the input ultrasound image.

CVPR **#2395**

Figure 1: Additional comparison result #1. (a) input clinical ultrasound image with an inhomogeneous mass in the liver hilum. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 3: Additional comparison result #3. (a) input clinical ultrasound image with multiple common bile duct stones. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 4: Additional comparison result #4. (a) input clinical ultrasound image with dilatated intrahepatic bile ducts. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 5: Additional comparison result #5. (a) input clinical ultrasound image with dilatated bile ducts.. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 6: Additional comparison result #6. (a) input clinical ultrasound image with dilatated bile ducts. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 7: Additional comparison result #7. (a) input clinical ultrasound image with an enlarged hypoechoic inguinal lymph node. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

Figure 9: Additional comparison result #9. (a) input clinical ultrasound image with a highly vascularized compressible mass in the lower leg. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

- **781**

mass in the lower leg. Top row of (b)-(g): despeckled results produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively. Bottom row of (b)-(g) shows the noise components of these despeckled results.

1996

1997

2049

2050

Figure 11: Additional ultrasound speckle reduction results produced from our method.

2212

2213

2265

2266

Figure 15: Additional ultrasound speckle reduction results produced from our method.

Figure 17: Additional ultrasound speckle reduction results produced from our method.

2752

2753

2805

2806

Figure 20: Additional ultrasound speckle reduction results produced from our method.

Figure 21: Additional segmentation comparison #1. (a) top row: segmentation result on the raw input breast ultrasound image with a benign fibroadenoma; bottom row: zoom-in view. Top row of (b)-(g): segmentation results on despeckled ultrasound images produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively; bottom row of (b)-(g): associated zoom-in views. Blue color: the ground truth delineated by clinical doctors; and Red color: segmentation results produced on different inputs.

CVPR #2395

CVPR 2017 Submission #2395. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CVPR **#2395**

Figure 22: Additional segmentation comparison #2. (a) top row: segmentation result on the raw input breast ultrasound image with a carcinoma tumor; bottom row: zoom-in view. Top row of (b)-(g): segmentation results on despeckled ultrasound images produced from SRAD [11], SBF [8], OBNLM [1], ADLG [2], NLMLS [10], and our method, respectively; bottom row of (b)-(g): associated zoom-in views. Blue color: the ground truth delineated by clinical doctors; and Red color: segmentation results produced on different inputs.

3240 References

- 3241
 3295

 3242
 [1] P. Coupé, P. Hellier, C. Kervrann, and C. Barillot. Nonlocal means-based speckle filtering for ultrasound images. *IEEE TIP*, 18(10):2221–2229, 2009. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
 3295

 3243
 [2] W. G. Flores, W. C. de Albuquerque Pereira, and A. F. C. Infantosi. Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. *Ultrasound in Medicine & Biology*, 40(11):2609–2621, 2014. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
 3298

 3245
 W. G. Flores, W. C. de Albuquerque Pereira, and A. F. C. Infantosi. Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. *Ultrasound in Medicine & Biology*, 40(11):2609–2621, 2014. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
 3298
- [3] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application to image denoising. In *CVPR*, 2014. 7
- [4] S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In *ICML*, pages 457–464. ACM, 2009. 7
- [5] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. *arXiv* preprint arXiv:1009.5055, 2010. 3
 - [6] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. *Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)*, 61, 2009. 3
 - [7] J. Mairal, R. Jenatton, F. R. Bach, and G. R. Obozinski. Network flow algorithms for structured sparsity. In NIPS, 2010. 7, 8
- [7] J. Mana, R. Senatch, T. R. Bach, and G. R. Osozinski. Fetwork now agorithms for outcated sparshy. In M. B, 2010. 7, 0
 [8] P. C. Tay, C. D. Garson, S. T. Acton, and J. A. Hossack. Ultrasound despeckling for contrast enhancement. *IEEE TIP*, 19(7):1847–1860, 2010. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
 [9] I. Van Narman, Sama antipic and matriced and matrix
 - [9] J. Von Neumann. Some matrix-inequalities and metrization of matric space. 1937. 4
- [10] J. Yang, J. Fan, D. Ai, X. Wang, Y. Zheng, S. Tang, and Y. Wang. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. *Neurocomputing*, 195:88–95, 2016. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
- [11] Y. Yu and S. T. Acton. Speckle reducing anisotropic diffusion. *IEEE TIP*, 11(11):1260–1270, 2002. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30
- [12] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He. Matrix completion by truncated nuclear norm regularization. In *CVPR*, 2012. 4, 5, 6, 7