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1. Event-based Camera Primer
Event-based cameras follow the same lens projection

model as traditional cameras, and differ in how they pro-
cess the light that hits each pixel. Instead of integrating
light intensity over fixed time windows, event-based cam-
eras trigger an event at a pixel when the log intensity over
that pixel changes over a tunable threshold C.

∆ log(I(x, y)) ≥C

Events are triggered asynchronously as these intensity
changes occur, and each event is comprised of a vector:

ei ={xi, ti, pi}

where xi is the image location of the event, ti is the ex-
act time that the event occurred, with microsecond accuracy
and pi is the direction (polarity) of the intensity change (−1
or +1). In this paper, we do not use the polarity informa-
tion.

The high temporal accuracy of the timestamp, combined
with the asynchronous nature of the sensor, allows for ex-
tremely high rate data acquisition, which forms the basis
for this paper. In addition, the logarithm in the event gen-
eration equation allows for the sensor to work over a very
wide range of light intensities, giving the camera very high
dynamic range. There are also many other benefits such
as low power consumption and low data rates compared to
traditional cameras.

2. Full Results
In Figure 1, we present the full error plots of from our

evaluation on the Event-Camera Dataset. We include both
the raw position and rotation errors (left), as well as the per-
centage position error against distance traveled and rotation
error against distance traveled (right). Solid lines represent
EVIO while dashed lines represent KLTVIO.

3. Implementation Details
For initialization, the OptiTrack frame (ground truth) is

set as the global frame for the filter, and the pose of the
IMU is initialized according to the first OptiTrack pose. The

initial velocity is determined by averaging the numerical
derivative between the first eight OptiTrack position read-
ings, and the biases are initialized at zero. We assume that
gravity acts against the z axis of the OptiTrack frame.

100 features with spatial window size 31x31 pixels are
tracked at all times, with a maximum feature track length
of 100 frames. The temporal window length is initialized
at 0.2 seconds, which worked across all sequences. There-
after, the temporal window size is set at 3 times the median
lifetime of features within the previous window.

For the MSCKF, the feature covariance is set to a diag-
onal matrix with
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along the diagonal, where fu

and fv are the focal length of the camera in the x and y di-
rections, respectively. For further outlier rejection, the final
error from the Gauss Newton estimate of each feature vec-
tor’s 3D position is thresholded, and any error above 102

f2
u

is rejected. Our C++ filter code is based off of the MAT-
LAB code from [1], and, like the original authors, we found
the filter to be extremely sensitive to the tuning parameters,
although the ones we note here worked for all of the se-
quences.

During testing, we also ran our algorithm on the outdoor
sequences presented in the dataset. However, two main is-
sues arose that caused tracking and state estimation to fail.
First, as there is no ground truth data, we were unable to
initialize the sensor state rotation, velocity and biases. This
resulted in substantial error from assuming zero initial ve-
locity. Second, the majority of the objects that generate
events in these sequences are window frames, which tend to
be horizontal and vertical lines. Due to the aperture prob-
lem, we were not able to maintain good feature tracking on
these objects, and so the majority of tracked features are
clustered in the horizon, where there is very little apparent
motion, causing significant drift of the state estimate.
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Figure 1: Raw and relative position and rotation errors for EVIO and KLTVIO compared to ground truth. Solid lines represent EVIO while
dashed lines represent KLTVIO.


