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A. Bi-directional Averaging

FF DF CPM | DM
Ours bidi 5470 | 6.142 | 5.851 | 5971
Ours no-bidi | 5.363 | 6.141 | 5.768 | 6.017
Epic bidi 6.225 | 6.837 | 6.521 | 6.261
Epic no-bidi | 5.815 | 6.625 | 6.337 | 6.441

Table S.1: Comparison of the results of our method and
EpicFlow for the Sintel validation set with and without ap-
plying bi-directional averaging to the input in evaluation
time .

We found that the training process results declined when
the average number of missing pixels in the training flow
maps was too high. Some of the matching algorithms,
in particular DeepMatching, did produce sparse maps like
these. To tackle this problem, we calculate the flow map
bi-directionally (From I to I’ and from I’ to I) using the
matching algorithm. We invert the second flow map and av-
erage the two maps. This simple step solves the sparseness
problem for all of the matching algorithms we used. This
procedure added to the computation time of our method.
However most matching algorithms already compute bi-
directional maps for consistency check and false matches
filtering purposes and so we did not need to apply them
twice. Importantly, we found that the bi-directional aver-
aging is critical mostly for training the network and specif-
ically for DeepMatching outputs. Training on FlowFields
non averaged maps, for instance, gives comparable results
to training with the averaged maps. Interestingly, applying
EpicFlow on the bi-directional average of the DeepMatch-
ing algorithm output also slightly improved their results
(Table S.1). For consistency reasons, we choose to present
in this paper the results gained using the bi-directional av-
eraged maps for training and evaluation. However, for all
matching algorithms using only the original, non averaged
map, in evaluation time yields results similar to those pre-

sented (Table S.1). The analysis in this section was per-
formed without the variational post processing for both our
method and EpicFlow.

B. Choice of Training and Validation Sets

The validation sets for both KITTI2012 and KITTI2015
datasets were the last 20% of the pairs in each. For the Sin-
tel dataset, due to the temporal dependencies within scenes
which are a pitfall for over-fitting, we define 4 whole scenes
including 167 image pairs as a validation set rather than a
random sample. We use the same validation set in the pre-
training and Sintel fine tuning phases.

C. Early Stopping

Early stopping served as our only regularization method.
The number of steps before performing the stop was
5000,1000 and 400 for training on the flying chairs, Sintel
and KITTTI datasets respectively. We use 4 rounds of early
stopping in which we divide the learning rate by two start-
ing with a learning rate of 5 x 10~° for the pre-training and
5 x 10~ for the fine tuning. After 4 rounds, we choose the
weights that yielded the best performance on the validation
set throughout the training.

D. Quantitative comparison To EpicFlow

Table S.2 shows the results gained using our method
compared to EpicFlow for both KITTI datasets. Our
method surpassed EpicFlow in all measurements (exclud-
ing %Out for KITTI 2012 using CPM). To further investi-
gate our performance compared to EpicFlow, we looked at
the EPE over all noisy pixels (pixels with EPE > 3) and
missing pixels from all the flow maps in the Sintel valida-
tion set. To make a fair comparison for this analysis, we
performed our prediction without bi-directional averaging
so the number of noisy and missing pixels in the input to
our network and EpicFlow was identical. We found that our
performance were better than EpicFlow’s in both of these



Method KITTI 2012 KITTI 2015
EPE | %Out-all | EPE | %Out-all
FF+Ours 2.363 11.11 7.921 29.00
FF+Epic 3.518 11.25 16.100 33.00
CPM+Ours | 2.271 11.3 6.92 26.04
CPM+Epic | 3.337 11.16 15.135 32.48
DF+Ours 2.074 9.01 6.626 24.29
DF+Epic 292 12.34 11.680 30.34
DM+Ours | 2.168 9.57 6.733 28.84
DM+Epic 3.515 14.20 14.068 35.12

Table S.2: Comparison of our model to EpicFlow on the
KITTI 2012 and KITTI 2015 validation sets. The %Out is
the percentage of pixels with EPE > 3 pixels.

areas, but it was significantly better only for the missing pix-
els (Mean &+ SEM difference between Epic EPE and Our
EPE: 0.08 £ 0.1, 1.11 4 0.42 pixels; paired t-test p=0.42,
p < 0.01 for noisy and missing pixels respectively, n=167).
This emphasize our superiority over EpicFlow, Especially
in large missing regions, as was demonstrated in Figure 5
of the main text.

E. Supplemental Figures

The supplemental figures presented here show further
examples on top of the ones presented in the figures in the
main text. Figure S.1 shows the progression of the predic-
tion process in the network as appears in the output of the
different detour layers, similar to figure 3a in the main text.
Notice here also how the network first performs a simple
interpolation and then refines the predictions in the deeper
layers. Figure S.2 presents the predictions of networks with
and without the edges input, similar to Figure 4a in the main
text. The progression of the predictions in the different lay-
ers in those network is presented in figure S.3. These two
figures illustrate how the edges input function in the net-
work - acting as a stopper for spread of activation. No-
tice how the bottom “simple interpolation” layers perform
similarly in both networks. However, starting from layer
4, the refinement process is very different. The network
that receives the edges as input utilizes them to act as mo-
tion boundaries. Finally, figures S.4, S.5 and S.6 shows ad-
ditional examples to the ones presented in figure 5 in the
main text, for the comparison between the performance of
our method and EpicFlow on the Sintel, KITTI 2012 and
KITTI 2015 validation sets.
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Figure S.1: Predictions in different layers — additional examples to figure 3a in the main text. The progression of the
prediction process throughout the different layers in the network, as shown by the detour networks outputs. Starting from the
second row, the second and third columns are the EPE and LD loss maps respectively.



Figure S.2: The predictions of the networks with and without the edges input (additional examples to figure 4a in the main
text). Edges are marked with black lines.
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Figure S.3: The progression of the prediction process throughout the different layers in the network, as shown by the detour
networks outputs for networks with and without the edges input, notice the similarity in the bottom layers and then the
divergence starting from layer 4.
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Figure S.4: A comparison of the predictions of our network to EpicFlow on examples from the Sintel validation set. (addi-
tional examples to figure 5 in the main text).
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Figure S.5: A comparison of the predictions of our network to EpicFlow on examples from the KITTI 2012 validation set.
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Figure S.6: A comparison of the predictions of our network to EpicFlow on examples from the KITTI 2015 validation set.



