
 

 

 

Abstract 

 

We propose a principled approach for the learning of 

causal conditions from actions and activities taking place 

in the physical environment through visual input.  Causal 

conditions are the preconditions that must exist before a 

certain effect can ensue.  We propose to consider 

diachronic and synchronic causal conditions separately 

for the learning of causal knowledge. Diachronic 

condition captures the “change” aspect of the causal 

relationship – what change must be present at a certain 

time to effect a subsequent change – while the synchronic 

condition is the “contextual” aspect – what “static” 

condition must be present to enable the causal 

relationship involved. This paper focuses on discussing 

the learning of synchronic causal conditions as well as 

proposing a principled framework for the learning of 

causal knowledge including the learning of extended 

sequences of cause-effect and the encoding of this 

knowledge in the form of scripts for prediction and 

problem solving. 

 

1. Introduction 

Being able to discern causalities between events is of 

paramount importance for an intelligent system. Knowing 

the causalities between events allows the system to make 

predictions and carry out actions for problem solving. A 

number of previous research works have investigated 

methods for learning causalities based on observing 

temporal correlations through vision [1-3]. Causality 

dictates a certain temporal order between cause and effect. 

Having learned the causality, say, between two events, 

subsequently, the temporal order observed between them 

can be used to discern the causality involved.  

However, Ho and Liausvia [2] pointed out that 

depending on the kind of sensory information that is 

available in attempting to discern causalities, in some 

situations it is difficult to discern causality based on 

temporal order alone. An example given was observing the 

sound of a gunshot and the subsequent sound emitted by or 

visual damage seen on the target. If two guns were fired at 

two targets, one could observe two consecutive gunshots 

first, followed by two consecutive sounds emitted by, or 

two consecutive visual changes occurring on, the targets. 

In this situation, it is difficult to establish which gun causes 

the damage on which target. 

However, if more information is available from the 

visual scene, the causalities could be adequately discerned. 

Basically, the fact is that for a gun to emit a bullet to hit a 

target, the gun has to be pointing at the target. This piece 

of knowledge could be encoded as follows: 

 

x, y   Gun(x)  

            Relative-Angle((Barrel(x), Object(y)) = 0, t) 

            Shoot(x, t) 

      → Damage(Object(y), t+Δ)                                 (1) 

 

which is a predicate logical statement stating that for every 

x that is a Gun, if the Relative-Angle between the long axis 

of the gun Barrel of x and a line joining the gun to 

Object(y) is 0 at time t (this is the definition of the 

Relative-Angle predicate) and x Shoots (a bullet) at time t, 

then Object(y) is Damaged at time t+Δ. Then, using this 

knowledge and by observing which gun is pointing at 

which object, it can be discerned which gun causes the 

corresponding damage. 

Thus, the availability of extra visual information and the 

availability of a more detailed physical model of the causal 

process involved can assist in discerning the causalities 

involved. In this paper, we expand on the work of Ho and 

Liausvia [2, 3] and describe a framework in which the 

above piece of causal knowledge as encoded in Eqn. 1 can 

be learned. It will be seen that learning causal knowledge 

such as that encoded in Eqn. 1 involves more than learning 

the temporal correlation between cause and effect. There is 

other accompanying sensory and physical information that 

has to be learned and encoded in certain manners as well. 

2. A Framework for Learning and Encoding 

Causal Knowledge 

In this section, a framework for the learning and 

encoding of causal knowledge is described. This involves 
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the principled learning of what are termed the diachronic 

and synchronic causal conditions, as well as the learning 

and encoding of sequences of causally connected actions 

into event scripts [4-8]. The scripts encode causal-spatial-

temporal knowledge, similar to the knowledge structures 

encoded in causal-spatial-temporal AND-OR graphs as 

investigated by Tu et al. [9] but with extra information 

learned and encoded that can better represent the causal 

and physical properties of the objects and processes 

involved for the use of subsequent processes such as 

prediction and problem solving. The primary difference 

between the framework developed here with regards to 

scripts and that of some previous work on scripts [4-6] is 

that this previous work does not deal with learning of 

scripts directly from visual information. Compared with 

some other previous work that discusses learning of scripts 

from visual information [7, 8], we present a more complete 

and principled framework of learning and encoding of 

causal knowledge into scripts in this paper. 

2.1. Diachronic and Synchronic Causal 

Conditions 

Some previous work [7, 8, 10] has shown that it is 

essential to separate two basic kinds of causal conditions – 

the diachronic and synchronic causal conditions. We use a 

simple scenario in Figure 1 to illustrate this idea. 

In Figure 1 it is shown that there are 3 objects, A, B, 

and C in an environment represented by the rectangle. 

Suppose we ignore the presence and influence of the 

rectangle and consider just the objects. 

 

 
 

Figure 1: Example used to illustrate the idea of diachronic and 

synchronic causal conditions.   

 

Consider that C always exists, at location Lc. This is 

represented as Exist(C, Lc). Consider that A and B do not 

always exist and A appears at time T and then shortly after 

that (time Δ later) B appears, and that the locations of A 

and B are La and Lb respectively. This is known as the 

Appear action. Suppose we recognize a causal relation 

between the appearance of A and B. The relation is stated 

as Appear(A, La, T)Appear(B, Lb, T+Δ). The 

appearance of A is termed the diachronic (DIA) causal 

condition of the causal relationship. Suppose also that we 

recognize that the existence of C at location Lc is 

necessary for the causal relationship to exist (i.e., without 

the presence of C, the appearance of A at La cannot cause 

the appearance of B at Lb). This is represented as: 

 

Exist(C, Lc) [SYN]  Appear(A, La, T) [DIA] 

 Appear(B, Lb, T+Δ)                                               (2) 

 

Exist(C, Lc) is known as the synchronic (SYN) causal 

condition, the absence of which entails the non-existence 

of the diachronic causal relation. It can be thought of as an 

“enabling” causal condition – i.e., it enables the diachronic 

causal relation to take place. The idea of “enabling” causal 

conditions has been investigated by Abelson in an earlier 

effort [11]. If we think of it in terms of counterfactual 

function, then it is like “had it not been there, the 

diachronic cause would not have given rise to the effect.” 

Its counterfactual causal role is the same as that of the 

diachronic causal condition – “had the diachronic cause 

not been there, the effect would not have taken place.” In 

the following discussions we will not explicitly label DIA 

and SYN for the sake of succinctness but their respective 

roles will be obvious. The learning mechanisms for the 

identification of these conditions will be discussed in the 

next two sections. 

2.2. Learning of Diachronic Causal Conditions 

Fire and Zhu [1], and Ho and Liausvia [2, 3] have 

described methods for learning causalities through video 

observation. In this paper we will extend on the method of 

Ho and Liausvia [2, 3] and describe below the essentials of 

the method that are relevant to the discussion in this paper. 

 

 
Figure 2: (a) 3 events, A, B, and C are observed to occur in 

sequence. (b) B is sometimes observed not to take place between 

A and C.   

 

Suppose there are 3 events, A, B, and C, that are 

observed to occur in sequence as shown in Figure 2(a). At 

this moment, Ho and Liausvia’s method [2, 3] first 

proposes the two causal relations: AB and BC. If B is 

indeed always present after A and before C, it is deemed 

that A is an indirect cause of C and hence it is not 

necessary to encode AC separately. However, if B is 

sometimes not observed to take place between A and C, 

such as shown in Figure 2(b), then the confidence values 

for AB and BC are reduced. B could just be noise, 

and the AC relation is then proposed, and the 

confidence value associated with it will be adjusted 

accordingly dependent on whether subsequently C always 

follows A or A always precedes C. The method is related 
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to the psychological contingency model of psychology [12, 

13] in which the causal contingency ΔP between an effect, 

e, and a cause, i, is defined as: 

 

                        ΔP = P(e / i) – P(e / ¬i)                      (3) 

 

which basically says that if an effect is observed in the 

absence of the cause, it reduces the probability of the 

causal contingency involved. (P(e / i) is the probability of 

observing e followed by i. 

While Ho and Liausvia’s method [2, 3] takes care of 

intervening “noisy events” between two events that are 

supposedly in a causal relationship, in the current 

discussion we assume that the situation is ideal and there is 

no intervening noise, so that a pair of events that 

consistently follow one another are identified to be 

causally linked.  

2.3. Learning of Synchronic Causal Conditions 

As discussed in Section 2.1, synchronic causal 

conditions are the “contextual” conditions that must be 

present to allow a cause to bring about an effect. The 

phenomenon of gravity is a good example to illustrate this 

idea [8, 10] - the release of an object (Object(x)) held in 

one’s hand at one time instance T causes the falling of the 

object at the next time instance T+Δ. The diachronic 

condition is Release(Object(x), T) and the causal relation 

is Release(Object(x), T)  Fall(Object(x), T+Δ). This 

could be learned through the process of learning 

diachronic conditions described above. However, there are 

other parameters associated with Object(x), such as its 

location. The process might begin with a first experience 

of the ReleaseFall causality/phenomenon at a specific 

location, say, X1, at T1. The agent observing this will first 

encode a specific rule consisting of a specific synchronic 

condition such as:  

 

At(Object(x), X1, T1)  Release(Object(x), T1) 

 Fall(Object(x), T1+Δ)                                            (4) 

 

Then, on a second observation at another location, X2, 

another rule is established:  

 

At(Object(x), X2, T2)  Release(Object(x), T2) 

 Fall(Object(x), T2+Δ)                                            (5) 

 

Because the X parameter values in the At(Object(x), X) 

synchronic condition for both instances are different (one 

is X1, and the other is X2), through a process of inductive 

generalization [7, 8, 10], these two rules could be 

generalized and combined into a general rule:  

 

 

At(Object(x)), ANYWHERE, ANYTIME)  

 Release(Object(x), SAME ANYTIME) 

 Fall(Object(x), SAME ANYTIME + Δ)                   (6) 

 

“SAME ANYTIME” means it is the same “anytime” as 

the one in the first line of the equation. This would be 

generalizing based on two instances termed “dual instance 

generalization.” [7, 8, 10] If, on the other hand, the values 

of X are the same in the two instances that occurred at 

different times T1 and T2, say SX, then that value is kept as 

a “must have” specific value for X in a combined rule, with 

the time being generalized to ANYTIME: 

 

At(Object(x)), SX, ANYTIME)  

 Release(Object(x), SAME ANYTIME) 

 Fall(Object(x), SAME ANYTIME + Δ)                   (7) 

 

 Depending on a parameter called “desperation” which 

captures the desperation on the part of the agent involved 

in using a causal rule such as that above to solve problems, 

the number of instances observed before generalization 

could be more or fewer, as discussed in Ho [8]. 

Ho [8, 10] also discusses backing up from over 

generalization. For example, the gravity example above 

(Eqn. 6) of expecting that releasing an object anywhere 

will cause the object to fall may become invalid in certain 

orbital or outer space environment. Thus, a more specific 

rule may be formed:  

 

At(Object(x)), ANYWHERE ON EARTH, ANYTIME)  

 Release(Object(x), SAME ANYTIME) 

 Fall(Object(x), SAME ANYTIME + Δ)                   (8) 

 

This process is called retroactive restoration of the 

earlier more specific conditions (i.e., X1 and X2 are 

actually all locations on earth) [8, 10]. It can also be 

formulated as an exception – e.g., the rule is applicable 

ANYWHERE except CERTAIN OUTER SPACE 

LOCATIONS, etc. 

The process can be summarized as follows: 

 

1. Inductively generalize over values of parameters in the 

diachronic or synchronic causal conditions that are 

different in different instances, using a desperation 

parameter to control how many instances to consider 

before executing generalization. 

2. Retain the values of the parameters that are the same 

over instances. 

3. Execute retroactive restoration if necessary and create 

exceptional conditions for general rules. 

2.4. Learning of Event Scripts 

An event typically consists of a number of sub-actions. 
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These actions are typically causally connected and can be 

chained and learned in the form of a “script” [4-8]. 

Typically, a script encodes a starting state, a sequence of 

actions, and an ending state [4, 7, 8]. The gun-shooting-

bullet-damaging-object event discussed in Section 1 is an 

example of a script consisting of a number of causally 

linked sub-actions. In general, there are both diachronic 

and synchronic causal conditions to be learned. Let us now 

combine the devices described above to illustrate how an 

event script can be learned through visual observation. 

Figure 3(a) illustrates the earlier mentioned gun-

shooting-bullet-damaging-object event in Section 1 with 

typical visual parameters such as those that may be 

supplied by a computer visual system. These parameters 

include the absolute location of the gun (represented, say, 

by its centroid), AL(Gun(x), X), the absolute location of 

the target object, AL(Object(y), Y), the absolute angle of 

the gun barrel’s long axis in the environment, 

AA(Barrel(Gun(x)), A), the relative distance between the 

gun and the target object, RD(Gun(x), Object(y), D), the 

relative angle between the long axis of the gun and the line 

joining the gun’s centroid to the target object, 

RA(Barrel(Gun(x)), Object(y), A), etc. For simplicity, we 

assume that the target object is a point object. 

 

 
 

Figure 3: (a) One instance of a Gun(x) at a certain location with a 

certain orientation, and a target Object(y) at a certain location. 

(b) Another instance of Gun(x) and Object(y).   

 

Assuming that the bullet (Bullet(z)) is moving slowly 

enough to be observed, a sequence of actions and the 

contextual states of Figure 3(a) would be as shown in 

Figure 4. Figure 4 is the Gun-Shooting-and-Damaging-

Object (GSDO) event script learned and captured from the 

visual environment of the event of Figure 3(a), each line in 

the script representing the state of the world at that 

particular time step, starting from an arbitrary time T1. It 

is a SPECIFIC GSDO script because it is learned from a 

specific instance of the event, and the various parameters 

have specific values. One can think of the first line of the 

script as a “starting” state and the last line as an “outcome” 

state. 

In Figure 4, the time steps are shown on the left as T1, 

T2, T3, … For this time variable as well as other variables 

in the figure, such as the location variable X, the number 

next to the variable represents the value of the variable. 

I.e., T1 means “T=1,” or X6 means “X=6,” etc. This 

notation is used for the sake of brevity. Therefore, the time 

changes from T1 to T2, T2 to T3, etc. represent elemental 

time step changes. For simplicity, we use one value “X” to 

represent both the usual “X” and “Y” co-ordinates in a 2D 

environment. AL, AA, RD, and RA have the meanings as 

defined above. Appear, Disappear, Contact, Damage, and 

Press-Trigger have the usual meanings in English. After 

Bullet(z) Appears after the Press-Trigger event, it moves 

toward the target Object(y) and its absolute locations, AL, 

changes elementally (increasing by one unit for every unit 

time step) accordingly. The initial synchronic condition 

(INIT SYN COND) is replicated in every time step. 

 

 
 

Figure 4: A SPECIFIC GSDO (Gun-Shooting-and-Damaging-

Object) script, learned and captured from the event instance of 

Figure 3(a). The arrow indicates the value of RA (=0) that 

corresponds to Gun(x) pointing at Object(y).   

 

For brevity, we have omitted some other visual 

parameters associated with Bullet, such as the RD (relative 

distance) between it and the Gun and Object, which would 

be changing as Bullet moves. If these values are included, 

the system might discover other regularities, such as 

whenever the Contact event happens, the RD between 

Bullet and target Object(y) would be 0. 

Note that as indicated with an arrow in Figure 4, the 

Barrel is pointing straight at target Object(y), therefore the 

RA between the long axis of the Barrel and a line joining 

the centroid of Gun(x) to target Object(y) is 0. 

Note also that underlying the time-step-by-time-step 

sequential structure of the script shown in Figure 4, there 

could be encodings of individual causal rules that were 

learned earlier or are learned as this current sequence of 

actions is observed or experienced. Based on the learning 

mechanisms of diachronic and synchronic causal 

conditions as described in Sections 2.2 and 2.3, some of 

the learned individual causal rules are: 

 

Press-Trigger(Gun(x), X1) {INIT SYN COND} 

 Appear(Bullet(z), X4) {INIT SYN COND}      (9) 

 

AL(Bullet(z),*X) {INIT SYN COND} 

 AL(Bullet(z),*X+Δ1) {INIT SYN COND}     (10) 
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AL(Bullet(z), X11) Contact(Bullet(z), Object(z)) 

{INIT SYN COND} 

 Damage(Object(z), X12) Disappear(Bullet(z)), 

{INIT SYN COND}                                               (11) 

 

Eqn. 9 or causal rule 9 is shown to be a specific rule in 

the sense that the Press-Trigger and Appear actions both 

take place at specific locations X1 and X4 respectively. 

Eqn. 10 is general (i.e., the precondition is Bullet(z) at 

“any” X, represented as “*X” and the effect is such that 

Bullet(z) is at “the same any X plus one” location, 

represented as “*X+Δ1”) because there is more than one 

instance of the bullet movement that have been observed 

and generalized over. Eqn. 11 is also specific. Eqns. 9 and 

11 can become general rules after more instances of the 

actions involved are observed, such as after the situation of 

Figure 3(b) as represented in Figure 5. 

Figure 4 is a SPECIFIC GSDO script because it 

contains specific values of various variables. Thus, it 

captures this particular event in which Gun(x) is shooting 

from a certain location, in a certain direction, and at target 

Object(y) at a certain location. 

Now, suppose there is another instance of the event, 

shown in Figure 3(b), in which Gun(x) and target 

Object(y) are at different locations from that in Figure 

3(a), then the script captured and learned will be as shown 

in Figure 5. In this instance, not only the locations of the 

objects involved are different, the distances between 

Gun(x) and target Object(y) are also different, resulting in 

Bullet(z) traveling for a shorter distance (fewer 

incremental distance steps) before hitting target Object(y). 

 

 
 

Figure 5: A SPECIFIC GSDO (Gun-Shooting-and-Damaging-

Object) script, learned from the event instance of Figure 3(b).   

 

After observing both instances of the GSDO event (each 

of which is learned as a SPEFCIFIC GSDO script), the 

system executes a “dual instance generalization” process 

as described above in Section 2.3, in which parameters that 

are observed to have different values are generalized, 

marked with a “*” which means “any value” in Figure 6 

(such as in Eqn. 10). Figure 6 is thus the GENERAL 

GSDO script. It includes the knowledge of Eqn. 1 but is 

richer with more information. Therefore, “*X” for the AL 

of the Gun means “any value for X.” The Press-Trigger 

predicate also has an argument *X, and this means it is an 

“any value” but the same value as the “X” in the AL 

predicate. Because in both instances, Bullet(z) appears at 

the mouth of the Barrel which is 3 locations away from its 

centroid, the generalization process takes note of this and 

generates *X+Δ3 for the location of the appearance of 

Bullet(z). Δ3 means Δ=3, which in turns means the 

location is incremented by 3 units from X, and it always 

has this value because it has this value in both instances of 

Figures 3(a) and 3(b).  

 

 
 

Figure 6: The GENERAL GSDO script derived from Figures 4 

and 5.   

 

Note that RA is 0 in both instances (indicated with an 

arrow in Figures 4 and 5), therefore it remains a “must 

have” value here, which is 0 (also indicated with an arrow 

in Figure 6). This means in a general situation Gun(x) must 

be pointing straight at target Object(y) before there is 

Damage to Object(y) at the end of the event. 

There is one other kind of generalization process 

operating on other than the parameter values. This process 

operates on the number of steps of certain action, in this 

case, the movement of Bullet(z). Because in the two 

instances observed, the numbers of steps of location 

changes of Bullet(z) are different, the system creates a 

[REPEAT *N-TIMES, 1st N=1] instruction, which is to 

instruct that the particular predicate/action is to be 

executed “any” number of times, each time the value of N 

is to be incremented by 1, and the value of N starts at 1. 

This will generate the movement steps with their 

corresponding specific location values for any instantiated 

instance. The variable M for T has the same function as N 

– each time it is to be incremented by 1 and it begins with 

the value of 1. Because the temporal steps are incremented 

by 1 each time, the elemental incremental step is Δ=1 (i.e., 

represented by Δ1). If a variable is incremented by other 

than the amount of 1 each time, the learning process will 

encode it accordingly: Δ2, Δ3, etc. The learning process 

could conceivably also detect constant accelerated 

changes, or accelerated accelerated changes, if there are 

regularities as such. If the changes are random, then the 

system would encode the statistics such as the mean and 

deviation of the changes. 
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2.5. Script Instantiation for Prediction and 

Problem Solving 

The instantiation of this GENERAL GSDO script of 

Figure 6, when a particular new event instance is 

encountered, would begin with setting the AL of Gun(x) 

and Object(y) to be at specific locations – i.e., *X and 

*XX will get these values – and the other values are then 

calculated accordingly. An instantiated version of the 

script can thus be used to predict: (a) that a Bullet(z) will 

appear; (b) the time at which the target Object(y) will be 

hit; (c) that Damage to Object(y) will result. The script can 

also be used in reverse for problem solving – if Damage to 

Object(y) is desired for Gun(x) and Object(y) at certain 

locations, this script could be selected as it encodes in its 

“outcome” - its last step - a Damage(Object(y), *XX) 

predicate. On invoking the script, it dictates that the Barrel 

of Gun(x) must point at Object(y) (RA…=0) in its first 

step, followed by a Press-Trigger action. Thus, this is 

returned as the solution to the problem. 

3. Issues Related to General Causal Learning 

Framework 

There is a number of issues related to the above causal 

learning mechanisms involving diachronic and synchronic 

causal conditions leading to the learning of event scripts 

and these will be discussed in this section. 

3.1. The Availability of Basic Visual Information 

The above process of learning diachronic and 

synchronic causal conditions requires the availability of 

various visual and physical parameters such as the absolute 

locations of various entities, the relative distances between 

entities, the absolute and relative orientations of the 

entities, etc. (Though not being used in the examples 

considered above, the constructs and structural dimensions 

of the entities involved would also be useful for 

formulating causal rules and event scripts.) It is reasonable 

to assume that this visual and physical information is 

available through the visual system. In fact, it has been 

argued and demonstrated in Ho [8] that without certain 

visual information, an agent would only be able to search 

randomly in the environment for food or other things to 

satisfy its needs, and its ability to survive would largely be 

dependent on chance. As a result, no “intelligent behavior” 

on their part could be emitted. Visual or other sensory 

information such as that above is essential for supporting 

the formulation of useful causal rules for intelligent 

behavior and survival. This is the indispensable essential 

causal role of visual and other sensory information. Thus, 

they have to be made available in an intelligent system to 

support intelligent behavior. The effort in naturally 

intelligent systems in evolving various sensory systems 

and the effort in including various sensory systems 

especially computer vision systems in AI systems attest to 

the importance of providing sensory information and 

accordingly, this information is available for the learning 

of causal knowledge. 

3.2. The Identification of Event Script Boundary 

The identification of event boundary (start and end 

states) is currently an open question [14, 15]. The 

sequence of activities depicted in Figures 3-6 could be part 

of a longer sequence of activities and we have not 

discussed how they may be “carved out” or isolated from 

the longer sequence and encoded as belonging to a 

particular script with the starting and ending boundaries as 

shown in the figures, even though the mechanisms of the 

learning of diachronic and synchronic causal conditions as 

described above could proceed independently of this issue. 

In general, there are two competing requirements to 

forming and encoding a script from a sequence of actions. 

From the point of view of problem solving, if there is a 

long chunk of script that can immediately be retrieved to 

fit the current requirement (of a problem stated in the form 

of a start and goal state), the problem solving process will 

be expedient. However, shorter sequences of actions are 

useful in the sense that they are more transferrable between 

problem solving situations. For example, an entire 

Restaurant Script such as that investigated by Schank [4] 

consisting of quite a long sequence of actions can be 

activated expediently to deal with the problem of 

alleviating hunger by eating at a restaurant, but the shorter 

sequences inside the script, such as the Payment Sub-

script, can be used in other problem situations if it is 

available separately. This issue merits further studies but 

below we describe and elaborate further the methods 

discussed in Ho [8] and propose some possible methods 

for this purpose: 

 

1. If a sequence of actions is a result of problem solving, 

i.e., definite start and goal conditions were given 

earlier to a problem solving system and the system 

generates a sequence of actions as the solution, then 

that sequence of actions and the starting and ending 

states will be encoded in the script accordingly. This is 

a definitive way of bounding an event script as the start 

and end states are known and there is a purpose to the 

script as it serves a certain problem solving process. 

2. If there is no activity in the environment for a relatively 

lengthy period of time before and after a sequence of 

actions, that sequence of actions is grouped into a 

script. (The problem with this criterion is the definition 

of “lengthy.”) 

3. Consider the example of the actions in Figure 4 that 

could be part of a longer sequence of actions. One 
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could begin with any change of state, such as the 

Damage of Object(y) and the Disappearance of 

Bullet(z) as one end point of a script (the “goal”) and 

trace “backward” until the causes of the entity causing 

the Damage, namely Bullet(z), are all accounted for. 

Since Press-Trigger causes Bullet(z) to Appear, that, 

and perhaps the step before that that specifies the 

synchronic condition, could together be identified as 

the starting condition of the script. Searching further 

backward, one could conceivably find another 

“Acquire-Gun” script. 

 

In conclusion, more future work is required to address 

the issues of script boundary. 

3.3. Opportunistic Learning of Causality and 

Event Stream Separation 

It has been shown in Ho and Liausvia [3] that in a 

“busy” environment in which many events are happening, 

the learning of causality is difficult. If an intelligent system 

fresh to the world is placed in a situation in which many 

never-before encountered events are happening, it would 

be difficult to learn what causes what. This is akin to what 

the psychologist William James said about an infant facing 

a “blooming and buzzing” confusion when he/she first 

experiences the world [16]. While it is not totally 

impossible to learn causality in a somewhat noisy 

environment, as shown by the work of Fire and Zhu [1] 

and Ho and Liausvia [2, 3], an intelligent system may 

actually have the opportunities to learn from a relatively 

quiet environment and then apply earlier learned 

knowledge to tease out the various streams of causalities in 

a “busy” environment. The situation is shown in Figure 7. 

 

 
 

Figure 7: (a) Opportunistic situation: the movement of an object 

from a starting location to an ending location, learned and 

encoded as a Movement script. (b) Event stream separation in a 

busy environment: the movement of many objects 

simultaneously with a Press-Switch  Light-On event. 

 

Figure 7(a) shows an ideal situation in which something 

like a Movement script could be learned – an object 

moving from a starting location to an ending location. This 

would be like the bullet movement segment of the script in 

Figure 4. If nothing else is happening like in Figure 7(a), 

then the time-step-by-time-step causality of the change of 

the absolute location of the object (like the AL’s in Figure 

4) could be learned and chained together into a Movement 

script through a process as described in Section 2. We are 

also assuming that there could be two similar instances of 

Figure 7(a) that take place at different locations and times  

so that a general Movement script is learned, like in the 

case of Figure 6 for the GSDO script.  

However, had the system encountered the situation in 

Figure 7(b) first, in which there are many objects moving, 

and in addition there is a Press-Switch  Light-On event, 

it would be a situation of “blooming and buzzing” 

confusion – the movement of one object at one time 

instance could potentially be the cause of the movement of 

another object at the next time instance, etc. In the interest 

of not postulating too many spurious causalities, the 

system could be inhibited from attempting to learn causal 

rules when there are too many objects and actions 

involved, and there are no existing causal rules to discern 

the causalities between some of them.  

However, in the event that the system had already 

learned a Movement script such as that in Figure 7(a), it 

could use that knowledge to achieve two things in the 

situation of Figure 7(b). Firstly, it can use the script to 

identify and separate the event streams in Figure 7(b) –

there will be 4 streams of movement actions that can be 

matched to the Movement script. Here we are using an 

“explaining away” mechanism – if a certain action of a 

certain object could be causing a certain other action, as 

encapsulated in a known script, then that action’s effect is 

accounted for and the system will not seek another action 

elsewhere to be causally linked to it. Likewise, if a certain 

effect could be accounted for by a known cause 

encapsulated in a certain script, then the system will not 

seek other possible causes elsewhere. This way the 

action/event stream identification and separation of the 4 

movement tracks in Figure 7(b) could be achieved. 

Secondly, once the movement actions are accounted for by 

the 4 Movement scripts, the situation is no longer 

“blooming and buzzing” with many unknown causalities, 

and the Press-Switch  Light-On causality can then be 

learned. We believe this bootstrapping process is how the 

myriads of causalities in our seemingly complex 

environment are learned by natural intelligent systems and 

AI systems can also use the same mechanisms to learn 

these causalities. 

3.4. Extraction of Functionality from Scripts 

The GENERAL GSDO script of Figure 6 also encodes 

the operation and functionality of a gun. Earlier we 

conceived of Figure 6 as an event script. From the point of 

view of operation and functionality, we ask questions 

centered around the artifact, the gun. Let us consider the 5 
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“wh” questions that can be asked about the gun based on 

the GENEREL GSDO script (we are assuming that there is 

an extraction process that extracts the knowledge encoded 

in the script and provides the answers in English below): 

1. What does a gun do? Answer: It can be used to damage 

an object across space/from a distance. 

2. How does a gun work? Answer: You press the trigger 

and that will cause a bullet to be emitted from the 

barrel. The bullet will travel across space. Then the 

bullet, on contacting an object, will damage it. You 

have to point the gun at the object in order for the 

object to be damaged by the bullet. 

3. Where can you operate a gun? Answer: Anywhere. 

4. When can you operate a gun? Answer: Anytime. 

5. Who can operate a gun? Answer: anyone with a hand 

that has fingers – this is not currently encoded 

explicitly in Figure 6 but presumably the Press-Trigger 

action entails this and this knowledge is encoded in 

other related scripts. 

Thus, the GENERAL GSDO script of Figure 6 is not 

only an event script, but also encodes operational and 

functional information. 

4. Summary and Discussion 

We have described in this paper a principled way to 

treat causal conditions which is to separate them into two 

different types of conditions – synchronic and diachronic 

causal conditions. We also describe a principled 

framework of causal knowledge learning that enables long 

sequences of cause-effects to be learned and encoded into 

scripts for prediction and problem solving. A number of 

related issues are discussed which includes the kind of 

basic visual information that must be available for general 

learning of causal knowledge, the identification of event 

boundary to assist in the learning and encoding of scripts, 

opportunistic learning of causality and event stream 

separation, and the extraction of functionality from scripts. 

These issues should be further pursued in future work. 

In a general situation, the structure of events in the 

environment can be learned and organized in the form of 

AND-OR graphs [9, 17-19]. The framework that we 

propose here for the learning and encoding of causal 

knowledge in the form of scripts can be combined with the 

methods of AND-OR graph learning [9, 17-19] to create a 

more robust and general causal learning framework. 
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