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Abstract

Recent work in computer graphics has explored the syn-

thesis of indoor spaces with furniture, accessories, and

other layout items. In this work, we bridge the gap between

the physical and virtual worlds: Given an input image of

an interior or exterior space, and a general user specifica-

tion of the desired furnishings and layout constraints, our

method automatically furnishes the scene with a realistic

arrangement and displays it to the user by augmenting the

original image. Our method can deal with varying layouts

and target arrangements at interactive rates, which affords

the user a sense of collaboration with the design program,

enabling the rapid visual assessment of various layout de-

signs, a process which would typically be time consuming

if done manually. Our method is suitable for smartphones

and other camera-enabled mobile devices.

1. Introduction

The arrangement of objects into a layout is an every-

day problem. The problem is involved, because a desirable

arrangement may vary greatly according to different use

cases, individual styles, and other considerations, while var-

ious constraints, such as space bounds, the relationships be-

tween different objects, as well as comfort and other func-

tional and aesthetic criteria must be enforced. Layout de-

sign is far from trivial for people lacking domain experi-

ence, as evidenced by the existence of interior design pro-

fessionals.

Using broadly available smartphones and other camera-

enabled mobile devices, it is easy to share photos of in-

door or outdoor spaces and receive suggestions from friends

or hired professionals on how to organize and furnish the

spaces. Popular consumer mobile applications (e.g., by

Amazon) provide limited visualizations of selected furnish-

ings using augmented reality. However, prior work has not

addressed important aspects of visualizing spaces of interest
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Figure 1: (a) Image of a vacant living room. (b) Image

augmented with a layout synthesized by our method.

that incorporate automatically synthesized suggested lay-

outs. A typical use case would be to provide a computerized

alternative to the time-consuming process of manually stag-

ing a property for sale or lease through the pleasing layout

of furniture and other visible accessory items, which can

dramatically influence the perceived property value.

Mathematically, layout synthesis yields a challenging

non-linear optimization problem. The main goal of our

work is to develop a fast, automated system that, given lim-

ited user input consisting of a single image of a vacant in-

door or outdoor space, visualizes the space furnished with

optimal synthesized layouts. Our approach works well with

both interior and certain exterior spaces. It is suitable for

implementation as a mobile device application constrained

by limited computational resources.

The remainder of the paper is organized as follows: Sec-

tion 2 surveys relevant prior work on layout synthesis as

well as on scene understanding from images. Section 3

overviews our algorithmic approach. Section 4 presents our

results. There follows in Section 5 a discussion of the limi-

tations of our approach. Section 6 concludes the paper and

discusses future work.

2. Related Work

2.1. Layout Synthesis

Layout problems arise in a number of domains. Re-

searchers have applied domain-specific optimization ap-
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Figure 2: Outdoor Yard layout. (a) Random initial state; chairs are colliding unrealistically. (b) Intermediate state of the

optimization; not all chairs are facing their respective tables. (c) Final optimized layout; all chairs are in their correct

positions and orientations.

proaches to various layouts, from VLSI layouts [30] to ar-

chitectural floor plans [9, 21]. Layout synthesis also ap-

pears in the context of generating virtual worlds for com-

puter games, databases for computer vision algorithm test-

ing, and even virtual reality [33, 13].

Numerous methods have been proposed for synthesizing

layouts. Procedural modeling employs grammars [24, 25].

However, these methods require a user to manually encode

grammatical rules, a complicated task that is similar to im-

plementing a script for a professional modeling package.

Graphical user interfaces help simplify this task [19]. Addi-

tionally, modeling grammars may be augmented to interact

with external constraints in the form of guidance shapes,

user input, or from other models [4, 35, 36].

Optimization-based methods are used to achieve lay-

out goals under a set of predefined constraints. These

methods are usually stochastic in nature, sampling lay-

out arrangements from an unknown probability distribu-

tion [37, 22, 43, 41]. However, stochastic methods are usu-

ally slow when optimizing a layout with dozens of items.

Recent work achieves faster running times by combining

or using only a continuous, numerical optimization ap-

proach [38, 3].

On the consumer side, there exist various software pack-

ages and toolkits for designing and visualizing residential

layouts [1, 27]. However, these tools require significant

manual editing and interior design domain knowledge to

achieve satisfactory results.

2.2. Understanding Environments

Before augmenting the environment, ideally one must

understand the spatial layout and dimensions [10, 8], the ar-

rangement of objects within the environment [15, 16, 6, 14],

the human influence on these arrangements [17], and where

the objects should be placed, from small functional ob-

jects [16] to evaluating the physical quantities of a lay-

out [45].

To understand a scene directly from an image, Rama-

lingam et al. [26] proposed a method for deriving the ori-

entation of indoor and outdoor scenes from a single im-

age, combining vanishing points and an optimization pro-

cedure that considers all plausible connectivity constraints

between lines. In concurrent work, Izadinia et al. [11] pro-

pose a system that, given an image, reconstructs an approx-

imate virtual replica of the original scene using a database

of CAD models and a deep learning framework. Zhang et

al. [44] presented a system for visualizing an augmented

indoor scene using a specialized Project Tango tablet, al-

though it does not automatically generate suggestions and

requires manual editing.

2.3. Pixel-Wise Semantic Segmentation

Deep learning research has grown dramatically in recent

years thanks to algorithmic advances combined with effi-

cient and powerful implementations on GPUs. Most recent

results are based on the Visual Geometry Group (VGG)

network proposed by Simonyan et al. [32], a very deep

network that has produced state of art accuracy in image

classification tasks, with various modifications. FCN [20],

DeepLab [5], and Dilated Convolutions [42] perform pixel-

wise semantic segmentation and have yielded good ac-

curacy for such segmentation problems. The benchmark

for semantic segmentation algorithms is the Pascal dataset,

which contains images from various domains. Recently, an-

other pixel-wise semantic segmentation algorithm was pro-

posed by Badrinarayanan et al. [2], which also employed a

VGG net architecture. In addition to the newly proposed

techniques, the network was trained on both a road dataset

and an indoor scene dataset provided by SUN-RGBD [39].
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Algorithm 1 Automatic Layout Method

1: I ← Get input layout image

2: O ← Get user layout items and objectives ⊲ 3.3

3: S ← Segment scene (I) ⊲ 3.1

4: S ← Estimate 3D Scene (I) ⊲ 3.2

5: S∗ ← Generate Layout Suggestions (S,O)
6: I∗ ← Visualize Augmented Scene (S∗, I) ⊲ 3.3

3. Algorithm

The initial input to our method is an ordinary image of

an indoor or outdoor environment. First, we semantically

segment the scene depicted in the image, separating the

floor/ground from other objects in the scene. Second, we

detect the boundary of the floor and other significant edge

features. Third, we measure the scale and orientation of

the scene by using a checkerboard calibration marker. Fi-

nally, we generate an optimal layout with user-selected lay-

out items. Algorithm 1 provides an overview of our ap-

proach, indicating the sections in which the details of each

step are presented.

3.1. Semantic Segmentation of the Scene

We use a pixel-wise semantic segmentation algorithm to

extract the floor/ground. There exist various algorithmic

approaches for this pixel-wise segmentation. We chose to

use SegNet [2], whose model is trained with a SUN-RGBD

dataset [39], mainly because this dataset contains only in-

door scene objects while most other datasets have a mix of

images from various other categories. Badrinarayanan et

al. [2] trained their network with 37 categories, including

common layout objects, such as walls, chairs, tables, and

the floors of indoor scenes.

For synthesizing layouts, we first must estimate the

ground area available. To that end, we need to segment the

floor and remove irrelevant objects from the scene. Thus,

our task is a binary segmentation problem rather than a

multi-label segmentation one. To achieve this segmenta-

tion, we add one more layer after the softmax layer of VGG

net. This layer takes its output from the softmax layer and

produces binary class labels for the floor and other parts of

the image. This output is represented by a simple condi-

tional statement where the ’floor’ class from the softmax

layer produces ’floor’, and all of the other labels become

’others’.

Subsequent to the pixel-wise segmentation, we use the

approach suggested in GrabCut [29] to retain the floor and

remove other components of the scene. Fig. 3 shows the

result of this segmentation process. Thus, we detect the lo-

cation and boundary of the floor or ground, which is neces-

sary in order to establish a layout plane upon which we will

synthesize layout items.

(a) (b) (c)

Figure 3: The results of our segmentation and edge detec-

tion. (a) Original images. (b) Segmented floors/ground. (c)

Edge maps.

3.2. Inferring a 3D Estimate of the Scene

To estimate the size of the room, we ask users to place

a checkerboard calibration marker in the scene. The scale

of the room is estimated by comparing the known size of

the checkerboard to the segmented floor in the scene. The

details of this process are as follows:

1. Detect the checkerboard in the scene using Harris cor-

ner detection, and compute the room’s width, height,

and center in pixel coordinates.

2. Define an origin at the center of the checkerboard on

the x and y axes of the plane to the horizontal and ver-

tical directions, respectively. The z axis is determined

as the cross product of the x and y axes.

3. Employ the checkerboard to calibrate the camera and

set up the internal parameters. The camera pose is es-

timated based on the distance and orientation from the

origin. This step is necessary to estimate the position
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Figure 4: Synthesized game-room layout. (a) random initial state. (b) Intermediate state of the optimization; layout items are

too close for the layout to be deemed comfortable. (c) Final suggested layout with relaxed spacing.

of the virtual camera when rendering the final layout

containing the virtual 3D furniture.

4. Traverse the floor geometry from the origin along the

x and y axes to compute the distance from the origin

to the edge of the floor in pixel coordinates. Since we

know the ratio between the size of the checkerboard

in pixel coordinates and its real size, we can com-

pute the length of the floor in a scene by scaling its

length in pixel coordinates by the ratio obtained from

the checkerboard.

5. Apply the Holistically-Nested Edge Detection algo-

rithm [40] to detect the edges of the scene (Fig. 3(c)).

This deep-learning-based edge detector results in bet-

ter edge detection for our indoor scene images than tra-

ditional edge detectors, such as the Canny edge detec-

tor. We search for edges that are aligned to the z axis,

by selecting edge vectors l whose cosine distance to z,

cos(z, l) =
z · l

||z|| ||l||
, (1)

is greater than threshold t = 0.9. We use the longest

edge as the height of the space.

3.3. Layout Synthesis and Visualization

Our layout synthesis scheme is based on a continuous

numerical approach to layout synthesis [38], which was in-

spired by Position-Based Dynamics [23] and by a stochastic

McMC scheme for optimizing indoor layouts [43].

Given a layout, the user specifies the furniture items to

arrange, and the objectives of that arrangement. The objec-

tives are annotated in terms of geometric constraints, simi-

lar to those described in recent work [43, 22]. Among other

constraints, our method supports pairwise distance, distance

to wall, pairwise and wall rotational constraints, and visual

balance, and it can easily be extended with additional con-

straints. In a typical use case, a user can define the distance

between layout items in the same group, together with dis-

tance and orientation to the nearest wall. Collisions between

competing layout items are automatically resolved. We re-

fer the reader to the above cited papers for the details.

While [38, 43, 22] generate suggestions on a per-object

level of detail, we speed up layout generation in some cases

by employing a rule-based approach in which each object

encompasses a group of layout items. For example, a din-

ing table (Fig. 4) is usually accompanied by a set of match-

ing chairs at prescribed distances and orientations. This is

most apparent when furnishing an empty layout. In the

common use case, a user who is interested in furnishing

an interior layout travels to a nearby retail store and buys

furniture items in combinations, as suggested by the retail

catalog or displays on site; e.g., a collection that includes

sofas, adjoining sofa chairs, and a coffee table.

After obtaining the input layout area, input layout items,

and constraints between these items, our method synthe-

sizes the layout, which results in a 3D scene. Given the

estimated camera pose, the 3D representation of the layout

is rendered into the original image I , to yield the augmented

image I∗. For rendering, we use Blender Cycles with the

same settings for every scene, except for varying the expo-

sure setting to produce a more realistic result by matching

the illumination in I .

4. Results

Our framework is composed of two main components.

The semantic segmentation and edge detection component

is implemented in Python on an Ubuntu machine with a

3.4 GHz Intel Core i7 and Nvidia Titan X GPU. We use

Caffe [12], one of the most common libraries for deep learn-

ing in computer vision, for both image processing tasks. Se-

mantic segmentation and edge detection take on average ap-

proximately 0.1 seconds and 0.5 seconds, respectively. The

layout synthesis component is implemented in Python and

Cython. Each layout suggestion is synthesized in no more

than 4 seconds. Rendering the final result takes approxi-
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mately 3 seconds.

We briefly summarize our experiments next:

Hosting Room: (Fig. 1) We used a set of 5 dining tables,

a clothes rack, and a floor lamp. We did not impose any

strict distance constraints in this setting, except for the floor

lamp to be close to the wall.

Outdoor Yard: (Fig. 2) In this scenario, we assigned

two patio-style tables with chairs, where the chairs are con-

strained to be around the tables. We also added a BBQ grill

and a trash can. The grill is constrained to be at a greater

than minimal distance from the other layout items.

Game Room: (Fig. 4) This scenario includes a sofa,

floor lamp, two table tennis tables, and two dining tables

for socializing. The sofa is constrained to be near the wall,

and the tennis tables close to each other. The sofa is po-

sitioned in a slightly rotated position relative to the room’s

wall for a more comfortable interaction.

Bedroom: (Fig. 5) The bedroom setting included a bed,

closet, clothes rack, office table, chair, and a floor lamp. The

bed and closet were constrained to be near the wall, and the

floor lamp near the table.

Living Room: (Fig. 6) We experimented with a typical

living room layout, consisting of a TV, sofa, sofa chairs,

and coffee table. We also added an extra table and office

chair, and plants. In this setting, we constrained the TV to

be the focal point of the furniture groups, consisting of the

sofa, sofa chairs, and coffee table. Our system generated 3

different layout suggestions for the same layout items and

constraints.

5. Discussion

We have demonstrated the efficacy of our method by

augmenting various input scenes, both indoor and outdoor.

However, our method has some limitations. An incorrect se-

mantic segmentation of the scene is possible. This typically

happens when the input image is not clean; e.g., it contains

a large cast shadow, is under-exposed or over-exposed, or

the floor has a non-uniform pattern. Fortunately, these are

unlikely occurrences for our target use case; i.e., real es-

tate staging, since the sellers of a property tend to capture

high-quality images.

In the present study, we did not train our network on out-

door scenes. Therefore, we expect these scenes to be more

challenging. Nevertheless, we also tested our method on

outdoor scenes (Fig. 2), obtaining some adequate results.

We observed that outdoor scenes where similar to indoor

scenes with respect to the surface layouts and other segmen-

tation features of the latter. In general, however, our method

will not be reliable on outdoor images.

We used a checkerboard to determine the scale of the

scene, calibrate the camera, and appropriately set the virtual

camera used to render the completed layout. This calibra-

tion worked well when the space is approximately rectan-

gular, but it is not accurate in cases where the space has a

non-standard shape. Moreover, placing a marker in a scene

is not always convenient.

A user of our method must manually assign constraints

for the layout synthesis step. Assigning these constraints is

straightforward, albeit not automatic. This step can easily

be interchanged with a user-friendly set of questions regard-

ing the user’s layout preferences.

6. Conclusion and Future Work

To our knowledge, our system is the first complete, inter-

active system for augmenting images of indoor or outdoor

spaces with the highly automated synthesis of furnished lay-

outs. Users of our system can range from ordinary con-

sumers who are looking for a new residence or are interested

in remodeling an existing residence, to interior designers

and real-estate professionals.

In future work, we plan to improve our system by train-

ing it on a more diverse set of images; e.g., by collecting

various images, including outdoor scenes and more com-

plex or cluttered interior scenes from the several commonly

available datasets [7, 34, 31, 13]. Additionally, to further

improve the accuracy of our system, we plan to implement

a better scene layout understanding algorithm, such as the

one by Ramalingam and Brand [26] that estimates a layout

using vanishing lines, or the one by Ren et al. [28] that pro-

poses FCN-based scene layout estimation. We also plan to

combine holistically-nested edge detection [40] to improve

the accuracy of our layout detection, which should provide

us better 3D scene understanding. Better scene understand-

ing would enable an extended version of our system to han-

dle images of spaces containing existing furniture, which

would help people who want to add new pieces of furniture

or otherwise augment their spaces. Finally, we are inter-

ested in improving visual quality by incorporating an effec-

tive approach for estimating the lightning conditions in the

original image [18] so as to more realistically illuminate the

synthesized layouts.
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