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Abstract

Feature point matching for camera localization suffers

from scalability problems. Even when feature descriptors

associated with 3D scene points are locally unique, as cov-

erage grows, similar or repeated features become increas-

ingly common. As a result, the standard distance ratio-test

used to identify reliable image feature points is overly re-

strictive and rejects many good candidate matches. We pro-

pose a simple coarse-to-fine strategy that uses conservative

approximations to robust local ratio-tests that can be com-

puted efficiently using global approximate k-nearest neigh-

bor search. We treat these forward matches as votes in cam-

era pose space and use them to prioritize back-matching

within candidate camera pose clusters, exploiting feature

co-visibility captured by the 3D model camera pose graph.

This approach achieves state-of-the-art camera pose esti-

mation results on a variety of benchmarks, outperforming

several methods that use more complicated data structures

and that make more restrictive assumptions on camera pose.

We carry out diagnostic analyses on a difficult test dataset

containing globally repetitive structure which suggest our

approach successfully adapts to the challenges of large-

scale pose estimation.

1. Introduction

In this paper we consider the problem of estimating

the full 6DOF camera pose of a query image with respect

to a large-scale 3D model such as those obtained from a

Structure-from-Motion (SfM) pipeline [27, 34, 16, 25]. A

typical approach is to detect distinctive 2D feature points in

a query image and perform correspondence search against

feature descriptors associated with 3D points obtained from

the SfM reconstruction. This initial matching is performed

in descriptor space (e.g., SIFT [14] or SURF [3]) using

an approximate k-nearest neighbor search implementation

[17, 18]. Candidate 2D-3D correspondences are then fur-

ther filtered using robust fitting techniques (e.g., RANSAC

variants [10, 32, 15]) to identify inliers and the final camera
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pose estimated using an algebraic PnP solver and non-linear

refinement. Camera pose estimation is a fundamental build-

ing block in many computer vision algorithms (e.g., incre-

mental bundle adjustment), can provide strong constraints

on object recognition (see e.g., [33, 8]), and is useful in

robotics applications such as autonomous driving and navi-

gation.

Unfortunately, the performance of standard camera lo-

calization pipelines degrades as the size of the 3D model

grows. Finding good correspondences becomes difficult in

the large-scale setting due to two factors. First, standard

2D-to-3D forward matching is likely to accept bad corre-

spondences of a query feature with the model since the fea-

ture space becomes cluttered with similar descriptors from

completely different locations. Standard heuristics for iden-

tifying distinctive matches, such as the distance ratio-test

of Lowe [14], which compares the distance to the nearest-

neighbor point descriptor with that of the second-nearest

neighbor, fail due to proximity of other model feature de-

scriptors. Second, increasingly noisy correspondences ob-

tained from the matching stage drives up the runtime of

the robust pose estimation step, whose complexity typically

grows exponentially with the number of outliers. These

difficulties are particularly evident in large urban environ-

ments, where repeated structure is common and local fea-

tures become less distinctive [31, 1].

Related Work: These problems are well known and have

been approached in several ways in the literature. Works

such as [13, 12] focus on generating a simplified 3D model

that contains only a representative subset of distinctive

model points. With a smaller model and prioritized search,

it becomes possible to replace the traditional approach of

2D-to-3D forward matching, with 3D-to-2D back match-

ing, allowing the ratio test to be performed in the sparser

feature space of the query image.

An alternative to removing points from the model is to

cluster and quantize model point feature descriptors. [21]

use vocabulary trees to speed up forward matching by as-

signing each model point and each query feature to a vo-

cabulary word, yielding faster runtimes since the vocabu-

lary size is generally smaller than the model point cloud.
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Figure 1. Overview of our camera pose-estimation pipeline. We first exploit multiple nearest neighbor search and camera pose clustering to

identify candidate feature correspondences (red boxes, described in Section 2). We then utilize co-visibility to expand this set and prioritize

back-matching of model features (blue boxes, described in Section 3).

A linear search for the first and second nearest neighbors

is performed within each word bin, and a ratio test filters

out non-distinct correspondences. [22] use active search in

the vocabulary tree to prioritize back matching of 3D points

close to those that have already been found and terminate

early as soon as a sufficient number of matches have been

identified.

A very different approach is taken in the works of

[36, 29]. Camera localization is framed as a Hough voting

procedure, where the geometric properties of SIFT (scale

and orientation) provide approximate information about

likely camera pose from individual point correspondences.

By using focal length and camera orientation priors, each

2D-to-3D match casts a vote into the intersection of a vis-

ibility cone and a hypothesized ground-plane. Orientation

and model co-visibility are further used to filter out unlikely

matches, rapidly identifying the potential camera locations.

Our Contribution: Inspired by this prior work, we pro-

pose a fast, simple method for camera localization that

scales well to large models with globally repeated structure.

Our approach avoids complicated data structures and makes

no hard a priori assumptions on camera pose (e.g., gravity

direction of the camera). Our basic insight is to utilize a

coarse-to-fine approach that rapidly narrows down the re-

gion of camera pose space associated with the query image.

Specifically, we formulate a linear time voting process over

camera pose space by assigning each single model view to

an individual camera pose bin. This voting allows us to

identify model views likely to overlap the query image and

to prioritize back matching of those views against it while

exploiting co-visibility constraints and local ratio testing.

Figure 1 gives on overview of our pipeline. Our first

contribution (Section 2) is to introduce and analyze two

ratio-tests that can be used to find distinctive matches in

a pool of candidates produced by global k-nearest neigh-

bor search (kNN). Our second contribution (Section 3) uses

these forward matches as votes to prioritize back match-

ing of model images against the query image. Extensive

experimental evaluation (Section 4) suggests this approach

scales well and outperforms existing methods on several

pose-estimation benchmarks.

2. Ratio Tests for Global Matching

Forward-matching of query image points against a

model is effective when the model is small. In such mod-

els, approximate nearest-neighbors are often true corre-

spondences and ratio-testing is effective at discarding bad

matches. In this section we first establish that clustering

the model into smaller sub-models and performing forward-

matching within each cluster is sufficient to achieve good

performance for large models (Section 2.1). We then de-

scribe how to efficiently approximate exhaustive cluster-

wise matching by global forward-matching using approx-

imations to the local ratio test (Section 2.2) followed by

back-matching.

2.1. Clustering and Exhaustive Local Matching

A naive approach to solving camera localization at large

scale is to simply divide the 3D model into small pieces

(clusters) and perform matching and robust PnP pose esti-

mation for each cluster. This avoids the problems of global

feature repetition and difficulties of high density in the fea-

ture space. However, this is infeasible from a computational

point of view as it requires building a nearest-neighbor data

structure for each cluster and matching to each cluster sep-

arately at test time. Consider a kd-tree, where searching for

a match in a set with N descriptors is logarithmic in the set

size: O(log(N)). If we divide the model into |C| = N/S
clusters of constant size S, execution time is dominated by

the number of clusters which grows linearly in the model

size, O(|C|log( N
|C| )) = O(N

S
log(S)) > O(log(N)). While

not practical at scale, we take this exhaustive local match-

ing approach as a gold-standard baseline for evaluating our

coarse-to-fine approach.
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#clusters #images #inliers ratio error [m] fwd [s] RNSC [s] total [s]

1 (global) 463 94 0.57 0.64 0.833 0.129 0.962

50 512 66 0.54 0.45 13.10 43.62 56.822

500 517 51 0.49 0.29 80.23 523.69 603.52

Table 1. Results on Eng-Quad using a standard localization frame-

work applied to model clusters. Performing localization separately

in each cluster improves the number of localized cameras and the

median error accuracy, at the expense of longer runtimes due to ex-

haustive matching. We also report the number of inliers and inlier

ratio, as well as forward matching, RANSAC, and total times.

Exhaustive Local Matching is effective but slow: To

evaluate clustering and local matching, we use the Eng-

Quad dataset from [9], and build two SfM models using

COLMAP [25]. The first model contains only the training

image set, while a second model bundles both the training

and test images and is used for evaluating localization ac-

curacy. We geo-register the resulting reconstructions with

a GIS model so that the scale of the SfM model is ap-

proximately metric. 5129 training images of the 6402 were

bundled, and 520 out of 570 test images were additionally

bundled in the test model. The resulting point cloud has

579,859 3D points and 2,901,885 feature descriptors. We

refer to these descriptors as views of the point.

To generate clusterings of the model, we construct a

scene matrix S whose (i, j) entry contains the number of

points that image pair Ii, Ij share in the SfM model. We

performed spectral clustering [26] on the scene matrix us-

ing the 50 largest eigenvectors and produce three different

granularities: no clustering at all (purely global), 50 clus-

ters, and 500 clusters. To evaluate exhaustive local match-

ing, we matched a query image against every cluster and

select the one that produces the smallest localization error.

For matching to a cluster, we use FLANN [18] to find the

first and second NN of each query point and apply a stan-

dard ratio test with a τ = 0.7 threshold. We ran RANSAC

on each set of candidate cluster correspondences using a

P3P solver [11] and a focal length prior based on the image

EXIF metadata. Similar to [13], an image is considered to

be successfully matched if it has at least 12 inlier correspon-

dences with a reprojection error less than ǫ = 6px.

Table 1 shows that exhaustive local matching within each

cluster performs much better than global matching, with

lower median error and fewer failures. However, the execu-

tion time grows roughly linearly with respect to the number

of clusters, motivating our coarse-to-fine strategy.

2.2. Local Ratio Tests for Global Matches

How can we get the benefits of local cluster-wise match-

ing while maintaining the computational cost associated

with a single global nearest-neighbor search? Cluster-wise

matching considers a nearest-neighbor per-cluster for each

query point. To try and recover this larger pool of candi-

Algorithm 1 Global Forward Matching

INPUT: Query features Q, Model features V , NN search depth

k, ratio test threshold τ , match count threshold NF

M = ∅
while |M| < NF do

q = random sample from Q

{v1, ..., vk+1} = kNN(q,V, k + 1)

αq = ‖q−v1‖
‖q−vk+1‖

if αq ≤ τ then

M = M∪ {(q, v1), ..., (q, vk)}
end if

end while

return M

Figure 2. Cluster-wise ratio testing. Model views are divided into

clusters. For a query feature q in the image (red dot), we search

up to 5 nearest neighbors. Within clusters containing two or more

matches, we can perform a standard local 1-ratio test within the

cluster (e.g. v1 and v4 are the first and second NN in the green

cluster). For the singleton v3 in the pink cluster, we use an al-

ternate t-ratio test (Eq. 2) based on the matched view’s nearest

neighbor vNN (rather than the query point’s true second nearest

neighbor within the cluster).

date correspondences using global search, we propose to

retrieve the global top k nearest-neighbors for each query

point. Fortunately, approximate kNN searches are not sub-

stantially more costly since those points typically live in ad-

jacent leaves of the kd-tree (which must be explored even

for a 1-NN retrieval). A larger set of candidate matches

can address the problem of repeated structure by retrieving

the set of multiple scene points that might correspond to a

query point. However, it also results in a k-fold increase in

outliers which we now address.

We define a view v ∈ V as the 2D point observation of a

3D point p ∈ P in a particular model image I ∈ I. Given a

camera pose clustering C of the SfM model images, we as-

sign the view descriptors of each image to their correspond-

ing cluster c ∈ C. Note that these clusters divide images

in disjoint groups, but they do share common points, as a

3D point can have multiple views belonging to images as-

signed to different clusters. For a query image I with query

features Q, we search for k approximate nearest neighbors

using a global kd-tree structure built from all views V .
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Global k-ratio tests: We start with a conservative global

ratio-test (Algorithm 1) to prune candidate matches by com-

paring the distance ratio of the first and k+1 nearest neigh-

bor retrieved, as proposed by [35]. If the ratio is greater than

threshold τ , we drop the query point. Otherwise, all k near-

est neighbors pairs {(q, v1), ..., (q, vk)} are included in the

set of putative correspondences M. This global ratio test

is much more conservative than the standard first vs second

NN test. In the remainder of this paper, we will refer to this

global test as k-ratio, defined formally as
‖q−v1‖

‖q−vk+1‖
≤ τ .

The standard first versus second NN test will be referred as

1-ratio.

Proposition 1. If a candidate match fails the global k-ratio

test, it also fails the local 1-ratio test.

Proof. Let {vc1 , vc2} ⊂ {v1, ..., vk} be the first and second

local nearest neighbors of a particular query feature q. Since

the global set {v1, ..., vk} is sorted by ascending distance,

this implies that ‖q − vc2‖ ≤ ‖q − vk+1‖, and ‖q − vc1‖ ≥
‖q − v1‖. Formally,

‖q − vc1‖

‖q − vc2‖
≥

‖q − vc1‖

‖q − vk+1‖
≥

‖q − v1‖

‖q − vk+1‖
(1)

Hence, the local 1-ratio will always be equal or greater

than the global k-ratio. This guarantees that any correspon-

dence rejected by the k-ratio test would also have failed the

local 1-ratio test. A correspondence passing the k-ratio test

might not pass the local 1-ratio test, so the local 1-ratio test

is a more stringent criteria.

Cluster-wise ratio tests: After the initial global filtering,

we would like to perform local ratio testing within each

cluster. When more than two candidate matches for a query

point belong to the same cluster, we can simply re-rank

them and apply a standard 1-ratio test. For example, sup-

pose two global matches (q, v2) and (q, v4) which are the

second and fourth global NN of the query feature q fall

into the same cluster. If v2 and v4 are views of distinct 3D

points, then they are necessarily the first (q, vc1) and second

(q, vc2) local nearest-neighbors of q in that cluster (see Fig-

ure 2). Any lower-ranked matches within the cluster can be

ignored and the 1-ratio test applied to this pair.

When only a single global match falls within a cluster we

can no longer perform an exact local 1-ratio test since we

do not have immediate access to the 2nd nearest neighbor

within that cluster. Instead we develop a bound based on the

triangle inequality to define an alternate test for such cases

which we refer to as the t-ratio test.

Given a local correspondence vc1 ∈ c, we define vNN =
kNN(vc1 , c, 1) as the nearest neighbor of view vc1 in the

feature space defined by cluster c. Since vNN is obtained

purely from training data, we can pre-compute it offline and

access it at test time. We define the t-ratio test as:

‖q − vc1‖

‖q − vc1‖+ ‖vc1 − vNN‖
≤ τ (2)

Although we missed the local 2nd nearest neighbor in the

global search, the distance ‖vc1 − vNN‖ provides useful in-

formation on how far away the 2nd nearest neighbor might

be.

Proposition 2. If a candidate match fails the t-ratio test, it

also fails the local 1-ratio test.

Proof. Let q be a query feature, vc1 and vc2 the fist and

second local nearest neighbors in a cluster c, and vNN =
kNN(vc1 , c, 1). We can bound the distance to the second

nearest neighbor by the inequalities:

‖q− vc2‖ ≤ ‖q− vNN‖ ≤ ‖q− vc1‖+ ‖vc1 − vNN‖ (3)

where the first inequality holds since ‖q − vc2‖ ≤ ‖q −
v‖ ∀ v ∈ c \ vc1 , and the second holds by the triangle

inequality. Thus,

‖q − vc1‖

‖q − vc2‖
≥

‖q − vc1‖

‖q − vc1‖+ ‖vc1 − vNN‖
(4)

Consequently, a singleton match that fails the t-ratio test

will always fail the local 1-ratio test. The t-ratio test thus

only filters correspondences that would have failed the local

ratio test if vc2 was available.

Back-matching and fitting: To provide additional ro-

bustness to outliers, we can back match views (model fea-

ture point descriptors) which were indicated as candidate

correspondences from the forward matching. For any such

candidate matching view, we search for the first and sec-

ond nearest neighbor matches using a kd-tree built over the

query image features and apply the 1-ratio test. We then

select as the final set of correspondences the intersection of

pairs (q, v) that passed the forward and back matching pro-

cess. These pairs are cluster-wise best buddies [7], since

each q and v of a pair are both discriminative features in the

query and model feature space.

2.3. Cluster­wise ratio­tests are effective and fast

The cluster-wise ratio test, defined in Algorithm 2,

prunes a large number of non-discriminative correspon-

dences while still maintaining the locally unique matches.

The complexity of this algorithm is linear in the number of

forward correspondences NF . For every local NN vc1 , we

simply look for its second NN pair vc2 within the list of k
nearest neighbors. The list of intra-cluster nearest neighbors

is simply a view-to-vNN vector that can be pre-computed

offline and accessed at constant time, similar to vocabulary-

based methods that store view-to-word assignments. Hence,

at most NF ratio tests will be performed.
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Algorithm 2 Cluster-Wise Ratio Test

INPUT: matches M, clusters C, threshold τ

MF = ∅
for c ∈ C do

for (q, vc1) ∈ M with vc1 ∈ c do

if (q, vc2) ∈ M with vc2 ∈ c then

α(q,c) =
‖q−vc1‖

‖q−vc2‖
⊲ local 1-ratio test

else

vNN = kNN(vc1 , c, 1)

α(q,c) =
‖q−vc1‖

‖q−vc1‖+‖vc1−vNN‖
⊲ t-ratio test

end if

if α(q,c) ≤ τ then

MF = MF ∪ (q, vc1)
end if

end for

end for

return MF

#clusters #imgs #inl ratio err. fwd [s] RT [s] bck [s] RNSC [s] total [s]

1 481 115 0.74 0.69 0.821 0.008 0.021 0.046 0.895

50 477 127 0.59 0.66 0.818 0.008 0.028 0.061 0.915

500 480 133 0.56 0.61 0.821 0.009 0.038 0.066 0.934

5129 482 136 0.55 0.62 0.833 0.009 0.048 0.070 0.961

Table 2. Quantitative results on the 520 test image set using the

proposed localization framework of algorithm 2 and best-buddy

filtering. We used 5 nearest neighbors in the k-NN search. We

evaluated four spatial subdivisions, including a finest clustering in

which each camera in the model is considered a single cluster. Lo-

calization accuracy is competitive with exhaustive local matching

with achieving runtimes comparable to global matching.

We evaluated this cluster-wise approach using the same

settings as our gold standard baseline experiment. We

added a finer division of the model, consisting of atomic

clusters with a single image each. Table 2 shows the local-

ization performance on these different granularities. A sin-

gle global cluster gives surprisingly good results in the num-

ber of localized cameras, although it provides worse camera

position results. This is due to the restrictiveness of the ra-

tio test in denser search spaces, yielding fewer inliers and

missing some discriminative correspondences that would

improve results. As we increase the number of clusters, the

localization errors are reduced (8 cm on average) thanks to

the cluster-wise ratio test which provides more high confi-

dence matches (at the expensive of longer RANSAC run-

times). We obtain best results using the finest clustering

(a single model camera per cluster), successfully localizing

482 images. Compared to the gold-standard of Table 1, our

strategy is competitive, by only dropping 5% in localization

performance while being three orders of magnitude faster.

Moreover, the finest single-image clusters provide the best

result we can avoid running any complex clustering method

(e.g., spectral clustering). We use single-image clusters in

the remainder of the paper.

Dubrovnik - 800 test images

Method top-1 top-2 top-5 top-10 Time [s]

NF = 50 99.00% 99.38% 99.62% 99.88% 0.048

NF = 100 99.62% 99.75% 99.88% 99.88% 0.085

NF = 200 100% 100% 100% 100% 0.157

Eng-Quad - 520 test images

Method top-1 top-2 top-5 top-10 Time [s]

NF = 50 83.85% 85.96% 88.46% 88.65% 0.064

NF = 100 84.62% 86.54% 89.62% 90.96% 0.125

NF = 200 85.77% 87.69% 90.38% 91.35% 0.242

NF = 500 86.15% 88.27% 90.96% 91.35% 0.502

All features 86.92% 89.23% 91.15% 91.92% 0.833

Table 3. We achieve perfect location recognition results on the

Dubrovnik dataset using a random subset of 200 query features

that pass the k-ratio and cluster-wise ratio tests, suggesting that our

approach successfully finds local discriminative correspondences

for all 800 test images. We also obtain good results in the more

challenging Eng-Quad dataset, recognizing 478 (91.92%) images.

This agrees with the baseline results obtained in Table 2.

3. Accelerating Matching by Pose Voting

As Table 1 suggests, with appropriate cluster-wise test-

ing, forward matching now constitutes the primary compu-

tational bottleneck. Short of simplifying the model (e.g., as

pursued by [12, 13]), how might we further accelerate the

matching process? A natural strategy is to carry out forward

matching incrementally and stop as soon as we have a suf-

ficient number of matches to guarantee a good result. From

this perspective, we can view forward matching as “voting”

for the location of the query camera. Unlike [36, 29] where

votes were cast into a uniformly binned camera translation

space, we use each model camera pose as a putative bin

to cast our votes (also used in [19]). We avoid additional

data structures like vocabulary trees in favor of storing a

simple but effective view-to-vNN vector that enforces lo-

cal uniqueness. Once we have accumulated enough votes

to narrow down the camera pose to a few candidate clus-

ters, we can terminate forward matching and carry out back

matching with little loss in accuracy.

3.1. Coarse localization using cluster matching

To analyze how many votes are needed to determine a

good localization, we frame the problem as that of location

recognition [20, 30, 2, 24], namely producing a short ranked

list of model images that depict the same general location as

the query image. We follow the evaluation procedure of [5],

reporting if there exists at least one image among the top-

k images that shares 12 or more fundamental matrix inliers.

We benchmark performance on two datasets: Eng-Quad and

Dubrovnik [13].

The results in Table 3 are inspiring. Algorithm 2 is

able to recognize the location of all 800 test images in the

Dubrovnik dataset using 200 random features passing the

k-ratio test. Results on the more challenging Eng-Quad
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Algorithm 3 Prioritized Back Matching

INPUT: forward matches MF , clustering C, query features Q,

threshold τ , minimum number of matches NB , scene graph G

Hc = |(q, v) ∈ MF : v ∈ c| ∀c ⊲ Cast votes

MB = ∅, V C = ∅
while (|MB| < NB) ∧ (|V C| ≤ 20) do

c∗ = argmaxc/∈V C H

Mc∗ = ∅
for v ∈ c∗ do

q1, q2 = kNN(v,Q, 2) ⊲ Back match v to query

αv = ‖v−q1‖
‖v−q2‖

if αv ≤ τ then

Mc∗ = Mc∗ ∪ (q1, v)
end if

end for

MB = MB ∪Mc∗

if |Mc∗ | ≥ 12 then

for (q, v) ∈ Mc∗ do

for c′ ∈ C with v ∈ c′ do

Hc′ = Hc′ + 1 ⊲ Update votes

end for

end for

end if

V C = V C ∪ c∗ ⊲ Update visited clusters (images)

end while

return MB

dataset provide almost 92% accuracy on recognizing the

landmarks of the 520 query images for which we have a

ground truth pose. Importantly, a random subset of a few

hundred query features achieves nearly as good recognition

results as using all image features (a query image usually

has 5,000 to 10,000 features). This suggests that the for-

ward matching can be terminated early while still maintain-

ing good localization performance.

3.2. Prioritized Back Matching

Determining the correct model image only provides

rough camera location and additional work is needed to

estimate the precise camera pose. To reap the computa-

tional benefits of subsampling, we thus modify our frame-

work slightly. We use forward matching with a subset of

NF query features in order to identify likely model images.

We then perform back matching within candidate images

in order to expand the set of matches used for fine cam-

era pose estimation. This back matching is carried out us-

ing a greedy prioritized search over images ranked by votes

and further exploits co-visibility information encoded in the

SfM model to find additional distinctive matches that were

not identified during the forward (sub-sampled) matching.

Algorithm 3 describes our back-matching approach.

Given the forward matches found using Algorithm 2, we

select the most voted model image c∗ and back-match all of

its views against the query image using the standard 1-ratio

Algorithm 4 Camera Localization

INPUT: Query features Q, Model features V , co-visibility

graph G, camera clusters C, NN search depth k, ratio test thresh-

old τ , match count thresholds NF , NB , projection error thresh-

old ǫ

M = GLOBAL-FORWARD-MATCH(Q,V, k,NF , τ )

MF = CLUSTER-WISE-RATIO-TEST(M, C, τ )

MB = PRIORITY-BACK-MATCH(MF , NB , G, τ )

IP , δ = ROBUSTFITTING(MB, ǫ)

if |δ ≤ ǫ| ≥ 12 then

return Camera Pose IP
else

return Error - Pose not found

end if

test with threshold τ . The correspondences Mc∗ found are

added to the pool of back matched pairs MB used for the

fine pose estimation. These back matches are also treated

as votes. We use the SfM model’s camera-point visibility

graph G, to cast votes for other images that observe the

same views as in Mc∗ . These new votes increase the like-

lihood that neighboring images are selected for subsequent

rounds of back-matching. To avoid introducing noise into

the voting process, we only allow a back-matched image

to cast votes if it depicts the same location (i.e., returns 12

or more matches). The algorithm terminates when MB is

large enough to guarantee a good camera localization, or a

certain total number of images have been back-matched.

4. Benchmark Evaluation

We evaluated our approach (Algorithm 4) on three dif-

ferent datasets: Eng-Quad, Dubrovnik, and Rome. Rome

is a large dataset of 15,179 training and 1,000 test im-

ages. Dubrovnik is a popular 6,044 training and 800 test

image dataset whose SfM model is roughly aligned to ge-

ographic coordinates, allowing for quantitative metric eval-

uation. While Eng-Quad has fewer images, it is perhaps

the most challenging due to the presence of strongly re-

peated structures in the modern architectural designs it de-

picts. When using P3P, we used EXIF metadata for Eng-

Quad test images and ground-truth focal lengths from the

SfM models for Dubrovnik and Rome. We also briefly ana-

lyze results on the city-wide SF-0 dataset [12].

Dubrovnik correctness: After carefully analyzing the

original models provided for Dubrovnik, we found that the

test set ground truth was often wrong, with extremely large

focal lengths and misaligned 2D-3D correspondences. This

in turn resulted in large errors in camera location and poor

alignment between projection of 3D points and the corre-

sponding 2D features. These problems are evident in results

published elsewhere. For example, [23] report better results

using P4Pf [4] than using P3P with the given “true” focal

lengths. This is contrary to what should be expected: know-
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Dubrovnik (Original) - 800 test images

error [m]

Method #images #inliers ratio Q1 median Q3 <18.3m >400m time [s]

Sattler [21] 783.9 ≤100 - 0.4 1.4 5.9 685 16 0.31

Sattler [22] 795.5 ≤200 - 0.4 1.4 5.3 704 9 0.25

Zeisl [36] 796 - - 0.19 0.56 2.09 744 7 3.78

Svarm [28] 798 - - - 0.56 - 771 3 5.06

Ours (P3P) 800 358 0.65 1.09 7.92 27.76 550 10 0.62

Ours (P4Pf) 800 468 0.79 0.55 1.64 6.02 694 15 0.62

Dubrovnik (Corrected) - 777 test images

error [m]

Method #images #inliers ratio Q1 median Q3 <18.3m >400m time [s]

Sattler [21] 771 70 0.72 0.57 1.44 4.61 707 1 2.58

Sattler [22] 775 69 0.74 0.59 1.58 4.91 705 4 0.75

Ours (P3P) 777 591 0.88 0.33 0.66 1.60 759 1 0.48

Ours (P4Pf) 776 589 0.88 0.47 1.11 3.32 720 3 0.48

Eng-Quad - 520 test images

error [m]

Method #images #inliers ratio Q1 median Q3 time [s]

Sattler [21] 402 43 0.49 0.61 2.01 7.51 1.52

Sattler [22] 457 43 0.58 0.46 1.93 7.62 0.32

Ours (P3P) 509 112 0.66 0.33 0.67 1.47 0.69

Ours (P4Pf) 504 115 0.68 0.65 1.88 5.76 0.85

Rome - 1000 test images

Method #images #inliers ratio time [s]

P2F [13] 924 - - 0.87

Sattler [21] 976.90 ≤ 100 - 0.29

Sattler [22] 991 ≤ 200 - 0.28

Ours (P3P) 999 281 0.54 0.75

Ours (P4Pf) 1000 458 0.83 0.74

Table 4. Quantitative results of our method compared to related methods for camera pose estimation.

ing the ground-truth focal length (P3P) should outperform

joint estimation of pose and focal length (P4Pf). Examples

are shown in the supplementary material.

For this reason, we rebuilt a new version of the

Dubrovnik “ground-truth” model using the same set of key-

points provided for the original dataset and the excellent

SfM package COLMAP [25]. We aligned the new model

with the original one using a RANSAC-based Procrustes

analysis so that the scale is approximately metric. After

alignment, only 3853 of the recovered 6844 images were

located within 3 meters from their original position in the

model, further validating our concerns. Our reconstruction

provided ground-truth for 777 of the 800 query images.

Anytime performance: The runtime of our algorithm for

camera localization depends on two parameters: NF and

NB . Setting these parameters trades off localization accu-

racy with faster execution times. Figure 3 shows the in-

fluence of these variables using the Eng-Quad dataset. We

benchmarked forward matching times by randomly sam-

pling query features until a desired number NF pass the

global ratio under fixed values for NB . Similarly, we fixed

NF and evaluated different values for NB . In both cases,

the range of values tested vary from 50 up to 500 matched

features. Figure 3 shows the number of registered images
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Figure 3. Anytime performance: querying a small number of fea-

tures dramatically reduces runtime without a major loss in local-

ization performance. The forward subsampling does not affect

rough localization significantly and stabilizes after 0.3 seconds

(left) regardless of the NB value. Similarly, localization quickly

plateaus after 0.2 seconds at back matching time for different val-

ues of NF (right).

under these different configurations, and the time spent to

achieve such a level of performance.

Experimental details: We tested our localization

pipeline using the following settings: for each dataset,

we built a global kd-tree index using all model view

descriptors. We request k = 5 nearest neighbors and check

128 leaves. We set τ = 0.7 across all of our ratio tests. We

set NF = 200 and NB = 200 to provide a good balance

between camera localization and execution time. Algorithm

3 stops after 20 back-matched images, which is a generous

setting in these datasets (in most cases NB is achieved in

less than 5 loops). Experiments were performed using a

single thread on an Intel i7-5930 CPU at 3.50GHz. We

used the implementation of [21, 22] in Eng-Quad and the

re-bundled Dubrovnik comparisons, running a single thread

on an Intel i7-3770 CPU at 3.40GHz. We used a generic

vocabulary tree and default parameters: Nt = 100 for [21]

and N3D = 200 for [22]. Unfortunately, implementations

of [36, 28] were not available.

Camera Localization: We successfully localized all im-

ages in Dubrovnik, except one image in the corrected ver-

sion using P4Pf. We achieved the smallest localization er-

rors for all quartiles, and reported more images within the

18.3m threshold and fewer beyond the 400m mark. De-

spite finding a substantial higher number of inliers, our

method yielded larger average errors with respect to the

original Dubrovnik model due to its underlying defects in

the ground-truth. [28] and [36] (after RANSAC), who use

a shape-voting approximation to the rough image location

rather than the traditional match-and-RANSAC pipeline, re-

port smaller localization errors but at the cost of longer run-

times. Finally, we successfully localized all query images

in the Rome dataset using P4Pf. Rome also suffers the sim-

ilar inaccuracies as Dubrovnik, which resulted in the loss of

one test image using P3P.

The benefits of our approach are more pronounced on

Eng-Quad, due to its difficult characteristics. We localized
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Eng-Quad Dubrovnik

Figure 4. Qualitative localization results. Left column: model images (gray) are highlighted (red) if they received one vote from Algorithm

2. Algorithm 3 quickly recognizes model images from the same general area of camera pose space (green). Right column: correspondences

used by the PnP solver (yellow), along the localized camera (green). Ground truth camera position is indicated with a red circle. Best viewed

zoomed in color.

more than 100 and 50 additional cameras w.r.t. [21, 22] re-

spectively, improving all localization errors except the first

quartile using P4Pf. We obtain faster runtimes than [13, 36]

while being competitive with those of [21, 22]. Notably,

our approach adapts better to the more difficult Eng-Quad

dataset, spending more time retrieving images with suffi-

cient correspondences. On the other hand, we quickly rec-

ognize landmarks in Dubrovnik with the first or second top

ranked images, quickly retrieving sufficient putative corre-

spondence and yielding faster localization times.

Location Retrieval: We obtained an asymptotic recall of

66.63% on the SF-0 dataset using the protocol of [12]. At

95% precision, the recall drops to 52.30% using the effec-

tive inlier count of [19], falling below performance of other

methods [6, 19, 1, 36] for location recognition. For this

test we used less stringent parameters: k = 7, NF = 500,

NB = 300, and back matched up to 50 images. We expect

tuning these parameters and utilizing re-ranking heuristics

exploited by other methods to provide a better approach for

such location retrieval problems.

5. Conclusion

Alternatives to large-scale image localization have fo-

cused on reducing the density of the search space to quickly

find discriminative correspondences. Here we have shown

that retrieving multiple global nearest neighbors and filter-

ing them using approximations to the ratio test can quickly

identify candidate regions of pose space. Such regions can

be further refined by back matching to yield state-of-the-art

results in camera localization, even for datasets with chal-

lenging global repeated structure.
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