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Abstract

Feature matching quality strongly influences the accu-

racy of most computer vision tasks. This led to impressive

advances in keypoint detection, descriptor calculation, and

feature matching itself. To compare different approaches

and evaluate their quality, datasets from related tasks are

used. Unfortunately, none of these datasets actually pro-

vide ground truth (GT) feature matches. Thus, matches

can only be approximated due to repeatability errors of

keypoint detectors and inaccuracies of GT. In this paper,

we introduce ground truth matches (GTM) for several well

known datasets. Based on the provided spacial ground

truth, we automatically generate them using popular feature

types. Currently, feature matching evaluation is typically

performed using precision and recall. The introduced GTM

additionally enable evaluation with accuracy and fall-out.

The datasets were manually annotated, on the one hand to

evaluate the precision and unambiguousness of the GTM,

and on the other hand to determine the accuracy of the

ground truth provided with the datasets. Using GTM, we

present an evaluation of multiple state-of-the-art keypoint-

descriptor combinations as well as matching algorithms.

1. Introduction

Over the last decades, detection, tracking, and match-

ing of distinctive parts of images became key components

in computer vision. Keypoints (locations in the image) and

descriptors (description of the keypoints’ neighbourhood),

together referred to as features, are most commonly used

to localize and describe these parts. Image features enable

applications such as camera pose estimation [55, 61], ob-

ject detection and tracking [19], as well as visual localiza-

tion [39, 48]. Even though “hand-crafted” features tend to

*This work was funded by the Austrian Research Promotion Agency

(FFG) projects FarmDrive and AnyView3D (#849909 & #853261).

be increasingly replaced by learning pipelines (e.g. Yi et

al. [72] or Kendall et al. [28]), many real-time algorithms

still rely on reliable and accurate feature detection, match-

ing, and tracking. Various camera pose estimation algo-

rithms use image features to estimate and track a cameras

movement. Interesting applications of these algorithms are,

among others, navigation for autonomous ground [22] and

aerial vehicles [20], augmented reality [46], and structure

from motion [24]. The accuracy of e.g. feature-based vi-

sual odometry (VO) or visual simultaneous localization and

mapping (VSLAM) strongly depends on the quality of fea-

ture matches. These matches, however, depend on accurate

detection of keypoints, reliable and unique properties of the

descriptors, and the feature matching algorithm itself. Espe-

cially in real-time applications, such as VO, a trade-off be-

tween processing time and accuracy has to be found. There-

fore, reliable feature matching quality assessment is crucial.

1.1. Problem Description

A series of useful GT datasets exist to assess the accu-

racy of feature detection and matching algorithms. Some

are explicitly provided for evaluation of feature matching,

some address more general applications (see Section 2 for a

detailed description). GT is provided by either a global im-

age transform (e.g. homography) or spacial displacements

of the pixels (optical flow or disparity). Generating GT fea-

ture matches faces two main challenges which can lead to

ambiguity. First, it is not guaranteed that for each keypoint

in one image a corresponding keypoint in an other image ex-

ists. Even if the GT provides a potential keypoint location,

due to e.g. perspective distortion, occlusions or dynamic ar-

eas, a keypoint must not necessarily be found (or exist) there

and, as a consequence, a false correspondence could be es-

tablished. To overcome these challenges, often a threshold

is used to define a neighbourhood for valid keypoints around

the GT location (see Section 2). This, however, imposes a

bias and hinders identification of true negatives (TN). Sec-

ond, the accuracy of GT itself is limited as only synthetic
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datasets enable a highly accurate identification of matching

positions.

1.2. Contribution

We propose a novel method for performance evalua-

tion of feature matching with the focus on, but not lim-

ited to, real-time applications such as VO or VSLAM. This

includes the generation of highly accurate ground truth

matches (publicly available at vitro-testing.com/

test-data/gtm) from public benchmark datasets. To

summarize, this paper contributes to the research field in

several ways:

• A framework for generating ground truth matches is

presented and applied on several well known datasets

(Section 3).

• Our ground truth matches allow evaluation of descrip-

tors and matchers not only with precision and recall but

also with accuracy ACC = (TP + TN) / (P +N)
and fall-out FPR = FP/ (FP + TN).1 In addition,

an arbitrary inlier ratio can be set and the ambiguity

of correspondences using only the original GT data is

significantly reduced (Sections 3.1 & 4).

• We present a run-time and quality evaluation of mul-

tiple state-of-the-art keypoint-descriptor combinations

as well as matching algorithms using the above metrics

and various inlier ratios (Sections 4.4 & 4.5).

• To prove the accuracy and unambiguousness of our

GTM, we manually annotated matches on the syn-

thetic dataset Sintel [13] and on the real-world

datasets KITTI [47, 21], Oxford introduced by Miko-

lajczyk et al. [49, 50], and HCI Training [29] (Sec-

tions 4.1 & 4.3).

• Finally, using our annotations, we provide the ground

truth accuracy of the mentioned datasets (Section 4.2).

2. Related Work

Several frameworks for evaluating the performance of

descriptors and matching algorithms exist. Mikolajczyk

and Schmid [49] perform an evaluation of local descriptors.

They use their own dataset [50, 49] which provides ground

truth homographies to calculate 1 − precision and recall.

A threshold of 50% on the overlap errors of the image ar-

eas used by the descriptors is applied for the calculation of

these metrics and the correct correspondences. This thresh-

old leads to a bias as can be seen in their paper where they

1Precision = TP/ (TP + FP ) and recall = TP/ (TP + FN)
with true positives TP , false positives FP , false negatives FN , positives

P = TP + FN , and negatives N = TN + FP .

calculate recall and the number of correct matches for dif-

ferent thresholds. Heinly et al. [23] evaluate keypoint detec-

tors and binary descriptors using SIFT [38] and SURF [7]

as a baseline. Descriptors are evaluated by runtime, putative

match ratio, matching score, precision, and recall. The tests

are performed on multiple datasets (Oxford [50], Strecha et

al. [64], and their own), which feature different properties

like blur, illumination, and different transformations. All

datasets used provide GT information like homographies,

3D, or epipolar geometry. Moreover, they analyze the per-

formance of different detector-descriptor pairings. To iden-

tify TP, FP, and FN, necessary to calculate their metrics, a

fixed threshold of 2.5 pixels is used, which can lead to a bias

in the calculated parameters. Miksik and Mikolajczyk [51]

evaluate the runtime of local detectors, descriptors, and the

matching process in addition to precision and recall. The

experiments are carried out on the Oxford dataset [50] while

using queries of all image sequences together for match-

ing. In addition, they add features from a different dataset

to simulate a lower inlier ratio. To determine GT correspon-

dences they use the same procedure as in [49]. Furthermore,

they analyzed the runtime of real valued descriptors (e.g.

SIFT and SURF) utilizing a multiple randomized KD-tree

and compared it to the execution time of sequential searches

with binary descriptors. Johannson et al. [27] test different

detector-descriptor combinations on infrared (IR) datasets.

For testing, they generated a new IR image dataset that in-

cludes various deformations like view-point, scale, rotation,

blur, noise, and downsampling. The results based on recall,

1 − precision, and matching score were obtained utilizing

the code from [50], which uses a threshold on the overlap er-

ror. A quite interesting dataset and benchmark utility for de-

scriptor evaluation was introduced by Lenc et al. [34]. They

extract patches from various datasets using positions of a

combination of local keypoint detectors and an estimated

GT homography. Before a patch is extracted, they apply

a small amount of affine jitter to the position from where

the patch is extracted to simulate the geometric repeata-

bility error of typical local feature detectors. For bench-

marking, a descriptor has to be calculated for every patch.

These are evaluated on different sets of patches. Three dif-

ferent evaluation scenarios are addressed: image-to-many-

image, image-to-image, and patch classification. For the

first and second scenario, the ability of a patch descriptor to

retrieve corresponding patches is measured with mean av-

erage precision (mAP) of the descriptor distances. The last

scenario evaluates the ability of a patch descriptor to dis-

criminate pairs of patches that are in correspondence from

non-corresponding ones using a threshold on the descriptor

distance. These results are represented using the receiver

operating characteristic (ROC) [18] in addition to precision

and recall. Madeo and Bober [43] analyze the performance

of various binary and a few real valued descriptors with fo-
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cus on mobile applications. They use four different sce-

narios to test descriptors. Two of them are based on image

patches [14, 70, 25, 58], one on the Oxford dataset [50], and

one is based on their own recorded test set. The results are

represented using recall, Kullback-Leibler (KL) divergence

for matching and non-matching Hamming distance distri-

butions, and mAP on a descriptor distance weight based on

the ratio of descriptor distances from the closest and sec-

ond closest match. Moreover, they analyzed the runtime of

the evaluated binary descriptors and the behaviour on the

results for varying ratio thresholds of the ratio test [38].

In addition to the above mentioned datasets, several im-

portant datasets for testing various algorithms in the field

of autonomous navigation or vision-based driver assistance

systems exist. As many of these algorithms are based on

a matching pipeline using salient features, an evaluation on

features using these datasets is important. A few represen-

tatives of the available datasets are KITTI [47, 21], Leu-

ven [32], HCI-Robust [30], Stixel [57], HCI Training [29],

and Oxford RobotCar [42]. Some of these are used for eval-

uations in this paper. Cordes et al. [16, 17] performed an

evaluation on the accuracy of the GT data of the Oxford

dataset [50] and provide more accurate GT information for

it. Furthermore, an additional dataset with GT information

is provided.

For specific applications not only the right choice of a

descriptor but also of a matching algorithm is important.

Thus, Maier et al. [44] test various matching algorithms for

vision-based applications, such as Guided Matching based

on Statistical Optical Flow (GMbSOF) [44], CasHash [15],

hierarchical clustering tree [52], priority search k-means

tree [53], SparseVFC [40, 41] in combination with the hier-

archical clustering tree, linear matching and Locality Sen-

sitive Hashing [4] from the FLANN library [53], as well

as the randomized KD-tree [62]. For testing, they used the

KITTI disparity and flow datasets [47] in addition to the Ox-

ford dataset [50] on SIFT features [37, 38] and FAST key-

points [59] with FREAK descriptors [1]. After matching,

they perform a ratio test on the results, which are provided

using ACC, precision, recall, and FPR over various inlier

ratios. Moreover, they provide results on the runtime of the

different matching algorithms based on the same datasets.

Bernhardsson [9] provides a popular Approximate Nearest

Neighbour (ANN) benchmark suite to test the performance

of ANN matchers. For testing, one thousand randomly ex-

tracted queries from a dataset are searched. The results

are provided in the form of recall and average query time.

Within this benchmark, Malkov and Yashunin [45] are us-

ing SIFT [26], GloVe [56], CoPhIR [10], and MNIST [33],

in addition to their own generated dataset. They compared

the following ANN matchers: Hirarchical Navigable Small

World graphs (HNSW) [45], FLANN [53], Annoy [8], VP-

tree [11], and FALCONN [5].

3. Evaluation Framework

For testing the performance of descriptors and matching

algorithms based on different keypoint detectors, we gener-

ate Ground Truth Matches (GTM) with reduced correspon-

dence ambiguity from well known datasets that provide GT

information (Section 3.1). Besides that, GTM should also

cover the weaknesses of detectors, like repeatability errors,

for testing applications that depend on keypoint locations

and, thus, on the properties of detectors. We use HCI Train-

ing 1K flow [29], Oxford [50], and KITTI flow & dispar-

ity [47, 21] datasets. KITTI GT is quite sparse, due to the

fact that they were created using laser range data. There-

fore, a pre-processing step was necessary to allow for a

meaningful evaluation. Similar to Maier et al. [44], it fills

as many invalid GT pixels (where no laser range data was

available) as possible using information of the neighbouring

pixels.

To proof the accuracy of our generated GTM (Sec-

tion 4.1), we developed an annotation framework (Sec-

tion 3.2) and manually annotated the correspondences

within the image pairs.

3.1. Ground Truth Matches

We are tackling the challenges of creating unambiguous

GTM (mentioned in Section 1.1) in two ways: First, instead

of using a fixed distance threshold for defining a neighbour-

hood (which could result in missing true correspondences

while accepting wrong ones), we estimate a tailored thresh-

old for each image pair separately depending on provided

GT information and the used keypoint detector. Second, we

perform one forward and multiple backward searches in or-

der to identify correct correspondences and true negatives.

As a result, using our GTM requires no additional thresh-

old since the correct correspondences are already provided.

Furthermore, since our GTM contain true negatives, an ar-

bitrary inlier ratio can be generated.

Threshold estimation: We extract keypoints in both im-

ages and search for correspondences using a nearest neigh-

bour algorithm with an initial search radius of 10 pixels

(corresponds to a maximal displacement error of ~5% of the

upper bound of the KITTI spacial GT magnitudes). From

keypoint positions xL
i in the left image we calculate search

positions x̃
R
i in the right image with x̃

R
i = Hx

L
i for ho-

mographies H or x̃R
i = x

L
i + fi for flow/disparity fi. For

every nearest keypoint at position x
R
i , i ∈ [1, . . . , n] of

all n possible correspondences, the spatial distances de =
[e1, . . . , en] with ei =

∥

∥x̃
R
i − x

R
i

∥

∥ are calculated. To in-

crease robustness, the upper 20% of distances de are ig-

nored for calculating the median distance d̃e and its me-

dian absolute deviation σ̃e which are used to reject distances

ei > d̃e+3.5σ̃e. The highest remaining distance equals the

radius td which encircles the most reasonable candidates

(min. td = 2). For the used datasets, the threshold td lies be-
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tween 2 and 6.41 pixels. Statistics on td for specific datasets

can be found in the supplementary material.

Now we address the core problem of finding unambigu-

ous one-to-one matches within those most reasonable can-

didates.

Forward search: For every left feature kLi , the right

feature candidates kRi,j , j ∈ [1, . . . , ni] at x̃R
i within the

radius td are searched, as can be seen in Figure 1(a). In

the case of flow/disparity GT, features at positions with-

out existing GT are rejected. The match with the small-

est descriptor distance di,1 within td is called best potential

match. We first ensure global uniqueness by discarding all

left features with the same best potential match. We then

ensure local uniqueness by performing a ratio test inspired

by Lowe [38] and apply a threshold ts on the descriptor dis-

tance if binary descriptors are used. In detail, if di,1 > ts
or 1.5di,1 > di,j , j ∈ [2, . . . , ni], the feature kLi is rejected

(e.g. row 1 in Table 1). We use ts = αsb with binary de-

scriptor size b in bits and 0 ≤ αs ≤ 1. Empirically, we

found αs = 0.3125 to be the best.

The forward search is only used to reject left features,

as the right features could match different left features or

could serve as TN.

Backward search: To guarantee uniqueness to nearby

correspondences that might be within the local neighbour-

hood but outside the search radius td of a best potential

match (e.g. d4 and d7 in Figure 1(b)), we perform an en-

hanced backward search for each matching candidate kRi,j
within td (e.g. 3 keypoints in Figure 1(a)) of all remaining

left features kLi . The neighbourhood is defined by the in-

verse homography H−1 or an interpolated inverse of the

flow/disparity f and td. To ensure uniqueness of corre-

sponding features also in the left image, additional ratio

tests are performed after the backward search (e.g. row 3

in Table 1). We then perform further ratio tests on the found

left neighbours and their best potential matches (e.g. rows

4-5 in Table 1, green arrows in Figure 1(b)). Assuming that

for a small spatial neighbourhood the (affine) distortions be-

tween corresponding image regions are quite similar, the

descriptor distances should be as well. Thus, the descriptor

distances of the best matching features within a small spatial

neighbourhood were limited to a dynamic maximum value

(e.g. rows 6-8 in Table 1) to reject possible false matches.

This proofed to be an effective method to reject outliers.

The whole search procedure is repeated until the number

of features converges.

Figure 1 shows an example of the forward and one back-

ward search, while Table 1 lists the actual conditions which

are used to reject features. For simplicity in Figure 1 and

Table 1, the first index of right features kR and descriptor

distances d was skipped. The backward searches for the

remaining neighbours can be found in the supplementary

material.
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Figure 1. Example of removing the match ambiguity for a single

correspondence using forward and backward search. kL denotes

left and kR right features with descriptor distances d. td corre-

sponds to the spatial search radius at the position calculated by

the ground truth H . The blue arrows indicate the match under

test (best potential match). The red arrows point to spatial nearest

neighbours for which their descriptor distance to the query is not

the smallest and the green arrows indicate best potential matches

of other left features.

Corr. Fig. # Condition Rej. features

1(a) 1 d1 > ts ∨ d2 < 1.5d1 > d3 kL1

1(b)

2 kL1 → kR1 ∧ kR1 → kLi , i 6= 1 kR1
3 d4 < 1.5d1 > d5 kL1 , kR1
4 d4 < 1.5d7 kL3 , kR4
5 d5 < 1.5d6 kL2 , kR2
6 d1 < 1.25min (d1, d6, d7) kL1
7 d6 < 1.25min (d1, d6, d7) kL2
8 d7 < 1.25min (d1, d6, d7) kL3

Table 1. Conditions to reject features for a single correspondence

illustrated in Figure 1.

GTM are publicly available for several datasets at

vitro-testing.com/test-data/gtm. Our focus

is not providing an automatic benchmarking framework, but

providing a possible solution to test algorithms with con-

sistent GT to directly compute various well known perfor-

mance metrics.

3.2. Correspondence Annotation

For evaluation of the GTM and datasets in general,

we implemented a generic annotation framework for flow,

stereo, and homography-based GT datasets. The generated

GTM using FAST and SIFT keypoints as well as the origi-

nal dataset GT are evaluated by applying local patch match-

ing constraints. If the strict constraints are not met, manual

user-based annotation is used as fall-back. The framework

offers guidance and support for this manual annotation task

by providing a clean interface for correspondence annota-

tions and showing difference images of both the original
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Annot. Type d̃a d̄a σe Q1 Q3 min. max. p ns

Overall 0.095 0.194 0.304 0.050 0.209 0 5.828 0.004 5140

Automatic 0.081 0.149 0.216 0.045 0.160 0.001 3.534 - 4275

Manual 0.257 0.419 0.509 0.123 0.523 0 5.828 - 865

GTM Acc. 0.508 0.624 0.457 0.317 0.795 0 5.946 0.004 5140

Table 2. Accuracy of annotations measured using the synthetic

dataset Sintel [13].

patches around the initial hypothesis as well as versions

with histogram equalization applied to the patch regions.

To enable sub-pixel accuracy for manual annotation, we up-

scaled the patches and provided the user with functionality

for local refinement to achieve accuracies lower than 0.1

pixels. Locality is enforced and perspective/parallax errors

are reduced by comparing small-sized patches (48x48 pix-

els) that are warped by locally estimated or GT (if available)

homographies.

Annotating all available GTM of a dataset is unfeasi-

ble. Thus, we are estimating a minimal number of samples

nmin that are necessary to get a meaningful result. It is

estimated using the well known equation [31] for a repre-

sentative sample size

nmin =

z2p(1−p)
e2s

1 + z2p(1−p)
e2sno

, (1)

with the number of GTM no within the entire dataset, an

error range es, estimated error ratio p, and the statistical

standard score z. In addition, a minimum of 10 samples

was annotated within one image pair. We used z = 1.96
which corresponds to a confidence level of 95%. As the

error ratio p is not known in the beginning, it is set to a

worst case value of p = 0.5 and updated for the first time

after a few annotations na depending on the size no. Further

updates on p are performed after the annotation of every

single image pair. The error range es was set according to

p. For p ≥ 0.02, we used an error range of es = 0.01
and otherwise es = p/2. We treat a match as defective,

if the distance from the annotated position to the keypoint

position of a match is larger than td used for generating the

GTM. Thus, the number of defective matches nm is used

to estimate p = nm/na. The typically used sample size is

ns ≈ 2.5nmin and the samples are chosen randomly.

4. Results

In this section, we present results on the precision of

annotations (Section 4.1), an accuracy evaluation of pub-

lic available datasets (Section 4.2), an evaluation of the ac-

curacy and unambiguousness of the GTM (Section 4.3),

and a performance and runtime analysis of state-of-the-art

keypoint-descriptor combinations (Section 4.4) and various

state-of-the-art matching algorithms (Section 4.5) in terms

of ACC, precision, recall, and FPR over different inlier ra-

tios ranging from 1% to 100% using our GTM.

Dataset Detector GTM Descr. d̃GT
a max. Occ./h p ns

HCI F. FAST FREAK 0.248 21.637 0.41 0.006 17150

KITTI 15 F.

FAST FREAK 0.475 15.409 0.84 0.022 2373

SIFT FREAK 0.613 33.711 2.61 0.011 2678

SIFT SIFT 0.663 23.569 7.60 0.044 2763

KITTI 15 D.
FAST FREAK 0.700 18.561 6.26 0.029 2556

SIFT FREAK 0.859 67.795 2.55 0.024 2354

KITTI 12 D. FAST FREAK 0.485 63.249 5.08 0.022 2361

Oxford wall

FAST FREAK 0.966 27.939 1.69 0.044 1779

SIFT FREAK 1.103 33.310 1.23 0.014 2434

SIFT SIFT 1.234 57.187 7.27 0.106 3025

Oxford graff. FAST FREAK 0.597 10.662 5.65 0.048 2300

Oxford bark FAST FREAK 1.576 24.779 0.47 0.171 4251

Table 3. GT accuracy of various datasets. The median d̃GT
a and

maximum distances from the annotated positions to the GT were

calculated. Occ. specifies the fraction of occluded matches that

could not be annotated. p specifies the error ratio described in

Section 3.2 and ns the number of randomly selected samples. Ad-

ditional results can be found in the supplementary material.

4.1. Accuracy of Annotations

To check the accuracy of the annotation itself, we anno-

tated the synthetic dataset Sintel [13] using the FAST de-

tector and achieved accuracies typically below 0.1 pixels

(median). Details are listed in Table 2 using median d̃a,

mean d̄a, standard deviation σe, lower quartile Q1, upper

quartile Q3, minimum, and maximum distances from the

annotated positions to the synthetic GT. Moreover, the auto-

matic annotation achieves higher accuracy than the manual

annotation which confirms the applicability of the used lo-

cal patch matching constraints. The small error ratio p (see

Table 2) stems from 20 manual annotations for which the

annotation error was above the threshold td. A few of such

incorrect annotations are also part of the annotation results

described in Section 4.2, but the larger portion contributing

to the value of p is caused by errors of the underlying orig-

inal GT (like KITTI). Table 2 also lists the accuracy of the

GTM which is typically below 1 pixel (median of 0.5 pix-

els). This inaccuracy is mainly caused by small repeatabil-

ity errors of the detector and the missing sub-pixel accuracy

of the FAST detector. For the Sintel dataset, not a single

wrong match of the GTM was found as the underlying GT

has no errors. This shows the effectiveness of our algorithm

to generate unambiguous GTM.

4.2. Ground Truth Accuracy

We evaluated the accuracy of multiple existing datasets

using the annotation framework: KITTI 2012 [21], KITTI

2015 [47], Oxford [50], and HCI Training 1K flow [29]

dataset. KITTI and Oxford were chosen due to their pop-

ularity and HCI represents a new dataset with a high test

case coverage. KITTI and HCI provide, among others, GT

for stereo and flow, Oxford provides homographies.

Table 3 summarizes key statistical accuracy values from

the evaluation and Figure 2 shows histograms of the mea-

sured error distributions.

All datasets offer GT with median errors d̃GT
a < 1.6 pix-
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Figure 2. Density over the pixel distances from annotated positions to the GT (error) for (a) HCI flow, (b) KITTI 2015 flow, (c) KITTI

2015 disparity, and (d) KITTI 2012 disparity. The annotated positions are based on randomly selected matches of the GTM using FAST

keypoints. Additional results can be found in the supplementary material.

els. The typical accuracies of KITTI datasets are better than

1 pixel and the HCI dataset even achieves 1/4 of a pixel al-

though its resolution is much larger offering more than six

times the number of pixels per frame as compared to the

KITTI datasets.

The Sintel accuracy test in Section 4.1 shows that the

used annotation framework introduces a median error of

about 0.1 pixels for automatic annotations and 0.25 for

manual annotations. A larger portion of all annotations

were done automatically so that all median error values are

more than two times as high as the annotation’s framework

accuracy thus creating a reliable comparison of the evalu-

ated GT.

4.3. GTM accuracy

To test the accuracy of our GTM, we used the presented

annotation framework of Section 3.2. The annotations were

performed using the datasets KITTI 2015 flow and dis-

parity [47], KITTI 2012 disparity [21], and the sequences

“wall”, “graffity” and “bark” from the Oxford dataset [50].

Table 4 shows the results for these annotations. Com-

pared to the median distances d̃GT
a from annotated posi-

tions to the GT (Section 4.2), the GTM accuracy d̃GTM
a

is approximately within the same range. The difference

∆d̃a = d̃GTM
a − d̃GT

a of the GTM median error d̃GTM
a

to the GT median error d̃GT
a of annotations using FAST

keypoints is slightly worse for KITTI datasets than for an-

Matching precision using SIFT descriptors

Dataset Detector
GTM

∆d̃a dGTM
a < ťd

4 < dGTM
a ,

dGTM
a > 8 Occ.

Descr. dGTM
a ≤ 8

KITTI 15 F.

FAST FREAK 0.154 0.761 0.476 0.333 0

SIFT FREAK -0.037 0.848 0.154 0 0.143

SIFT SIFT 0.005 0.836 0.200 0.238 0.143

KITTI 15 D.
FAST FREAK 0.102 0.790 0.636 0.333 0.313

SIFT FREAK -0.048 0.798 0.250 0.222 0.500

KITTI 12 D. FAST FREAK 0.205 0.788 0.500 0.333 0.417

Oxford wall

FAST FREAK -0.419 0.764 0.500 0 0

SIFT FREAK -0.579 0.759 0 0 0

SIFT SIFT -0.512 0.766 0 0.016 0

Oxford graff. FAST FREAK 0.483 0.529 0.228 0.2 0

Oxford bark FAST FREAK -0.387 0.245 0.064 0.016 0

Table 4. GTM accuracy for various datasets. The precision is cal-

culated for GTM featuring different classes of distances dGTM
a .

Additional results can be found in the supplementary material.

notations using SIFT features as can be seen in Table 4.

This can be traced back to a better repeatability of the SIFT

detector. For the Oxford dataset, on the contrary, typi-

cally a lower error is achieved using the keypoints from

the GTM compared to the underlying GT. This is caused

by the relatively large error of the GT, which is often com-

pensated by the GTM as a result of the filtering procedures

described in Section 3.1. For GT errors dGTM
a > td, most

matches are correctly rejected as their discriptor distances

are too large. Some, however, remain classified as good

matches. To verify the matchability of such matches, their

precision, which is calculated using SIFT descriptors and

sequential search, is compared to those with dGTM
a ≤ ťd

and ťd = min (td, 4). In general, the precision decreases

with higher distance to the annotated positions but does not

drastically drop to zero (i.e. many of these matches are still

matchable) taking into account the extremely reduced num-

ber of GTM for dGTM
a > ťd. Table 4 lists the calculated

precisions of matches grouped by their GT errors dGTM
a

as well as the precision of occluded matches. This confirms

the enforced uniqueness for GTM which also holds for most

false matches that are a result of inaccurate original GT.

To check the influence of the descriptor type for GTM

generation, we generated and annotated the GTM using

SIFT descriptors in addition to FREAK descriptors for the

KITTI 2015 flow and Oxford “wall” datasets. As can be

seen in Table 3, the median distances for SIFT descriptors

are slightly higher (approx. 0.1 pixel) than for FREAK de-

scriptors. This is within the uncertainty of the annotation

described in Section 4.1. Moreover, the fraction of oc-

cluded correspondences and the error ratio p (see Table 3)

are significantly higher using SIFT descriptors. This is due

to the fact that in contrast to using binary descriptors (like

FREAK), no thresholding is performed on the SIFT descrip-

tor distances. Thus, for small GT errors, the choice of the

descriptor type has no influence on the GTM. To reduce the

influence of higher GT errors on the GTM, thresholding on

the descriptor distance is favorable, which is performed by

default in our GTM generation (see Section 3.1).
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4.4. Evaluations on Descriptors

We tested various keypoint-descriptor pairings in terms

of ACC, precision, recall, and FPR in addition to the run-

time using our GTM generated on the datasets KITTI 2015

flow & disparity [47] and Oxford [50]. For matching

we used the linear matching algorithm from the FLANN

library [53]. Evaluations are performed using the fol-

lowing descriptors: KAZE [2], AKAZE [3], BOLD [6],

BRISK [35], DAISY [65], FREAK [1], LATCH [36],

ORB [60], RIFF [71], SIFT [38], BGM-Bilinear [69],

BGM-Hard [69], BGM [69], LBGM [69], BinBoost [67,

68] with a descriptor size of 64 bits, 128 bits, and 256 bits,

in addition to the VGG descriptor [63] with a descriptor

size of 48 bits, 64 bits, 80 bits, and 120 bits. These de-

scriptors are tested using the following keypoint detectors:

SIFT [38], KAZE [2], AKAZE [3], MSD [66], FAST [59],

BRISK [35], and ORB [60]. We used the OpenCV [12]

implementations with default configurations of all men-

tioned detectors and descriptors except RIFF and BOLD.

For those, the code provided by the authors was used. For

BGM, BGM-Hard, BGM-Bilinear, LBGM, and all variants

of BinBoost and VGG the parameters were tuned according

to the keypoint type.

Descriptor Quality: We tested all possible combina-

tions of keypoints and descriptors mentioned above. Unfor-

tunately, some descriptors are incompatible with a few key-

points (see Table 5). All descriptors are tested with varying

inlier ratios ranging from 1% to 100%. For each inlier ra-

tio and dataset the average ACC, precision, recall, and FPR

over all image pairs in a dataset is estimated. For evalu-

ations on the Oxford dataset [50] all possible image pair

combinations (15) are used.

Table 5 shows the mean ACC for every keypoint-

descriptor combination. For every value shown in Ta-

ble 5, the average is calculated over the mean ACC of ev-

ery tested inlier ratio and the datasets KITTI 2015 flow and

disparity [47] in addition to the sequences “bark”, “bikes”,

“boat”, “graffiti”, “JPEG”, “light”, and “wall” of the Oxford

dataset [50]. We are using the mean ACC values in Table 5,

as ACC enables to quantify the closeness of an algorithm’s

output to the true solution. For most descriptors, SIFT key-

points are the best choice in terms of ACC as can be seen in

Table 5. For a high recall, AKAZE keypoints deliver bet-

ter results and for a high precision MSD or SIFT keypoints

should be used. Moreover, the choice of the keypoint de-

tector and descriptor depends on the underlying data. For

KITTI flow and disparity [47], AKAZE keypoints deliver

the best results for most descriptors in terms of ACC and

recall. Our evaluations showed that FAST and ORB key-

points perform worst independent of the used dataset. One

exception is the ORB descriptor which performs best with

ORB keypoints for most datasets.

Descriptor Runtime: The descriptor runtimes are eval-

Descr. / Keypoint SIFT KAZE AKAZE MSD FAST BRISK ORB

AKAZE - - 0.714 - - - -

KAZE - 0.734 - - - - -

ORB - 0.557 0.570 0.569 0.576 0.684 0.731

LATCH 0.475 0.475 0.553 0.424 0.458 0.568 0.568

BOLD 0.576 0.598 0.594 0.541 0.598 0.573 0.565

BGM BILINEAR 0.587 0.556 0.565 0.470 0.510 0.527 0.547

BGM HARD 0.652 0.601 0.614 0.507 0.604 0.575 0.621

BINBOOST 64 0.674 0.671 0.665 0.640 0.639 0.649 0.662

BRISK 0.676 0.687 0.691 0.659 0.614 0.751 0.683

BINBOOST 256 0.688 0.637 0.649 0.583 0.589 0.645 0.649

RIFF 0.709 0.720 0.719 0.720 0.659 0.761 0.685

BGM 0.716 0.662 0.674 0.603 0.643 0.667 0.694

BINBOOST 128 0.725 0.683 0.687 0.620 0.673 0.673 0.698

DAISY 0.736 0.703 0.703 0.670 0.700 0.709 0.692

FREAK 0.741 0.732 0.730 0.740 0.687 0.815 0.716

LBGM 0.746 0.730 0.729 0.720 0.722 0.721 0.739

SIFT 0.754 0.745 0.741 - 0.709 0.714 0.534

VGG 48 0.761 0.759 0.757 0.807 0.755 0.796 0.773

VGG 64 0.778 0.772 0.765 0.810 0.760 0.801 0.781

VGG 80 0.784 0.774 0.767 0.808 0.756 0.807 0.784

VGG 120 0.786 0.771 0.764 0.784 0.717 0.809 0.776

Table 5. Mean ACC of different detector-descriptor combinations.

The bold values mark the best performing combination for every

descriptor. The colored cells mark the highest, second, and

third highest mean descriptor ACC for every detector. Some cells

are empty due to a incompatible keypoint-descriptor combination.

Detailed figures of additional performance metrics over varying

inlier ratios can be found in the supplementary material.

uated using the GTM of the first 10 image pairs of KITTI

flow [47] with an inlier ratio of 100%. Time measure-

ments for one image pair are performed using the smallest

runtime of 20 runs on an Intel Xeon E5-1620 v3 3.5GHz

CPU. The runtime of one descriptor tf is estimated by

tf = ti/(nL
f +nR

f ) with the descriptor computation time ti
of both, the first and second image and the number of key-

points nL
f and nR

f in the first and second image. From the

resulting 10 time measurements, statistics (mean t̄f , median

t̃f , min. ťf , max. t̂f ) are generated. Table 6 shows the aver-

age runtimes t̄ť over ťf for all compatible keypoints shown

in Table 5.

Time measurements showed that the descriptor compu-

tation time is not linear to the number of keypoints for

the tested implementations of descriptors ORB, FREAK,

RIFF, SIFT, AKAZE, KAZE, BRISK, and DAISY. The

temporal behaviour for most of them is best described by

ti = t0 + tf

(

nL
f + nR

f

)

with a fixed time t0 depending

Descriptor t̄ť/µs Descriptor t̄ť/µs Descriptor t̄ť/µs
BOLD 5.4 BINBOOST 256 53.4 VGG 48 400.1

ORB 14.4 BGM 62.2 BRISK 424.7

BGM HARD 17.9 FREAK 80.2 VGG 64 440.8

BGM BILINEAR 20.0 RIFF 95.5 VGG 80 441.4

BINBOOST 64 36.6 LBGM 98.0 VGG 120 445.5

BINBOOST 128 42.1 AKAZE 151.2 DAISY 566.4

LATCH 47.3 SIFT 390.4 KAZE 613.9

Table 6. Mean over the minimum average descriptor computation

times t̄ť in µs for one descriptor over all compatible keypoints

stated in Table 5. Additional results can be found in the supple-

mentary material.
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Figure 3. Inlier ratio compared to mean ACC using (a) SIFT fea-

tures and (b) FAST keypoints & FREAK descriptors for the en-

tire KITTI disparity dataset from Menze and Geiger [47]. On the

results of all algorithms, a ratio test was performed. Additional

results can be found in the supplementary material.

on the image characteristics and keypoint type. For SIFT,

ORB, FREAK and RIFF descriptors t0 ≫ tf . For RIFF,

AKAZE, KAZE, BRISK, and DAISY, a high variance in tf
could be observed over the tested image pairs and keypoint

detectors.

4.5. Matching Quality & Runtime Evaluations

We tested the following matching algorithms in terms

of runtime in addition to ACC, precision, recall, and FPR:

GMbSOF [44] (GM), HNSW [45] (HN) from the NM-

SLIB [54], linear matching (LI) from the FLANN li-

brary [53], Small World Graph [54] (SW), VP-tree [54]

(VP), CasHash [15] (CH), ANNOY [9] (AN), and the ran-

domized KD-tree [62] (RA). For testing HN and SW, we

tuned them by varying their parameters based on the Oxford

“wall” sequence using FAST keypoints & FREAK descrip-

tors in addition to SIFT features.

To asses the matching quality of the different matching

algorithms we used the above mentioned performance met-

rics and the GTM of datasets KITTI 2015 disparity & flow

in addition to the Oxford sequences “bark”, “boat”, “graf-

fiti”, and “wall”. Figure 3 shows an example of these evalu-

ations. Most matchers support real valued descriptors but

only a few, like GM, LI, and HN are capable of match-

ing binary descriptors. HN performs similar to LI in terms

of matching quality although it is an ANN matching algo-

rithm. Comparing their runtime (see Figure 4), HN is orders

of magnitudes faster than LI. This shows the impressive im-

provements on ANN algorithms in the last years. GM and

HN have similar ACC for real valued descriptors but GM

outperforms HN using binary descriptors. Typically, GM

provides better results in terms of recall but slightly worse

results for precision. The reason for this is the completely

different matching approach, as GM constrains the search

space by utilizing spatial statistics from a small subset of

pre-matched and filtered correspondences [44].

Time measurements are performed for the above men-
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m
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m
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0.4 0.7 1 1.3
·104
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Figure 4. Runtime analysis using (a) SIFT features on the KITTI

flow dataset from Menze and Geiger [47] and (b) FAST keypoints

& FREAK descriptors on the Oxford “wall” sequence [49, 50].

Time measurements were performed using the smallest runtime of

100 runs on an Intel Xeon E5-1620 v3 3.5GHz CPU. Each data-

point stems from a different image pair with an inlier ratio of 75%.

Additional results can be found in the supplementary material.

tioned matching algorithms and each image pair of the en-

tire KITTI 2015 disparity, flow, and Oxford “wall” datasets

separately. An example of the results is shown in Figure 4.

GM is fast for a large amount of features but is outper-

formed by most other matching algorithms for a number

of features smaller than 500. For small numbers of features

and real valued descriptors, VP is the fastest followed by

HN which outperforms VP at higher feature numbers due

to a smaller gradient (see Figure 4b). Thus, the right choice

of a matching algorithm depends on the underlying data in-

cluding the expected inlier ratio and if a high recall or pre-

cision is desired. For most datasets, GM, HN, and VP give

the best results in terms of processing time and matching

quality.

5. Conclusion

We presented a method to generate ground truth matches

(GTM) based on the original ground truth of well known

datasets. The GTM provide unambiguous and correct corre-

spondences in addition to a user specific inlier ratio for test-

ing various vision based algorithms like descriptors or fea-

ture matchers. Tests on keypoint-descriptor combinations

showed that modern binary descriptors achieve comparable

results in terms of quality but significantly lower processing

times compared to real valued descriptors. The best results

were achieved using SIFT, AKAZE, and MSD keypoints

while FAST and ORB performed worst independent of the

used dataset. For matching descriptors, GMbSOF, HNSW

and the VP-tree achieved the best results in terms of pro-

cessing time and matching quality but their performance

differs depending on the number of features, dataset, and

the expected inlier ratio. Annotations showed that the HCI

Training 1K flow dataset provides the highest GT accuracy

followed by KITTI.
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