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Abstract

An uncertainty quantification approach to estimate the

errors incurred by the Kanade Lucas Tomasi (KLT) feature

tracking algorithm is presented. The covariance analysis is

based on the linearized sensitivity calculations of the KLT

algorithm. Track uncertainty thus computed is utilized to

quantify the errors associated with feature based relative

pose estimation algorithms. This paper shows that the un-

certainty analysis results serve as a means of measuring

the reliability of feature correspondences. One of the ap-

plication of resulting uncertainty analysis is to serves as a

criteria to eject badly track feature. An experiment based

on visual odometry result is given to demonstrate this func-

tionality.

1. Introduction

Image features can be defined as the scale-space

extrema[13]. A large body of work has been carried

out in image analysis to automatically provide a feature

based characterization of an image using its local texture.

SIFT[15], SURF[2], GLOH[20], and FAST[25] are exam-

ples of a few popular feature extraction methods. Given a

set of automatically extracted feature points, we are inter-

ested in using them to establish correspondence across im-

ages for localization and mapping. Feature tracking meth-

ods are among the most efficient approaches for providing

a practical solution to the feature correspondence problem,

owing to the construction of texture based descriptors[3, 16,

20]. Computational efficiency may be achieved in main-

taining feature correspondence in continuous images in a

stream by tracking them across successive images in the

stream.

Kanade Lucas Tomasi(KLT) feature tracker developed

by Kanade, Lucas and Tomasi [16, 30, 29, 1] remains a

popular choice for feature tracking. Tracks generated in this

propagation process are used in feature based relative navi-

gation applications[23, 26, 10, 4, 19, 17]. The KLT tracker

serves as an essential intermediate step in a sequence of op-

erations for relative navigation and surface reconstruction.

To this end, the uncertainty of KLT tracker is essential to

quantify the accuracy of localization and mapping. A sys-

tematic approach to estimate uncertainty properties of KLT

tracking result is an integral part of an image processing

pipeline determining the health of established feature corre-

spondences. False matches are common source of localiza-

tion error. Traditionally, this problem is handled by an ap-

plication of the Random Sample Consensus (RANSAC)[9]

algorithm on the feature tracks. RANSAC stipulate an ob-

jective matric to distinguish outliers from inliers. An alter-

native approach is to reject outliers based on the probability

score of the feature track[5, 32]. The result of proposed al-

gorithm can be utilized to access this probability score.

Kanazawa and Kanatani [12] propose a method to com-

pute the error covariance of a feature point from a gray scale

image using local texture gradient. Although they do not

consider propagation of feature uncertainty from one im-

age to another, they show that uncertainty of a feature point

is related to the curvature of its local intensity. Nickels

and Hutchinson [21] propose a method to estimate uncer-

tainty of sum of squared differences (SSD) based feature

tracking approaches that include the KLT tracker. In their

work, uncertainty of feature track is modeled as confidence

score of matched features, computed by taking SSD of ori-

gin and tracked pixels patch’s intensity. Although this ap-

proach provides a reasonable measure of tracking accuracy,

it does not explicitly derive the covariance from the image

gradients. Work done by Sheorey et. al.[28] uses prob-

ability theory to model the chance that KLT tracker gets

trapped at a local minimum during the tracking operations.

Gaussian mixture model is used for error covariance calcu-

lations. Dorini and Goldenstein[8] propose the unscented

KLT tracker for refining the KLT tracking result and esti-

mate the track’s local uncertainty. Unscented KLT tracker

first applies the unscented transform (UT)[11] to each of the

original feature points and obtains a set of sigma points. The

sigma points are tracked to next frame with the KLT tracker.

Mean value and the covariance associated with the distribu-
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tion of the tracked features are then computed from tracked

sigma points. There is a little insight about the choice of

the sigma points pertaining to the initial uncertainty. Re-

initializing the KLT tracker on sigma points has the short-

coming that these points on image may not yield successful

tracks, owing to the lack of texture away from the central

feature. This precludes effective uncertainty quantification.

Recent work by Ye et. al. [32] utilizes a probabilistic

voting model based on a Bayesian network to discard in-

valid feature tracks. Their method first computes the ho-

mography matrix based on an initial set of feature corre-

spondences. A joint probability model of the homogra-

phy obtained for the initial set of feature correspondences

is taken as the sample variance of the transfer error of the

set of neighboring points around the target feature. Esti-

mated homography enables the transfer error computation

by a projection of the original features on the target image.

The minimum transfer error of pixels in the neighborhood is

compared against a threshold value to determine the proba-

bilistic voting model of the feature correspondence. While

this method is very useful in determining whether a de-

tected feature is reliable or not based on the assumption that

the neighboring texture fits a plane that remains consistent

through successive frames, it does not capture th uncertainty

propagation of the tracker. Note that, if one is interested in

the errors obtained by the tracking function alone, based on

the texture gradients, the homography transformation may

not capture the deformation process in time.

In this paper, we propose to model propagation of feature

point uncertainty based on the sensitivity analysis of local

linearized approximation of the track obtained by the KLT

tracker. Note that KLT based methods subsume a wide set

of approaches that range from original LT tracker [16] to the

recently reported machine learning augmented KLT tracker

(such as Extended Lucas Kanade (ELK)[22] and Condi-

tional Lucas Kanade (CLK)[14]). These approaches rely on

image gradient to predict the feature motion and deforma-

tion. Owing to the fact that the proposed gradient based un-

certainty analysis uses exactly the same information as the

tracker, proposed algorithm does no entail additional com-

putational expense. This is also indicates that the analysis

presented in this paper is compatible to other KLT based

methods. Note that it is also more efficient than the un-

scented transformation, since additional feature tracks need

not be generated. Further, the aforementioned issue of loss

of feature tracks on sigma points is avoided.

In applications involving vision based Simultaneous Lo-

calization and Mapping(SLAM) and Visual Odometry(VO),

the ability of registering common feature across images is

crucial. Although it is more common to use feature descrip-

tor matching to establish feature correspondence due to its

robustness, this may be computationally expensive. Various

successful pipeline architectures[23, 26, 10, 4, 19, 17] show

that it is more computationally efficient to replace descrip-

tor matching step with feature tracking for continuous im-

ages in a stream. Since navigation filters for SLAM depend

upon uncertainty quantification of the feature measurements

to derive statistically optimal solution, the feature track un-

certainty is vital for effective feature based navigation.

This paper is organized as follows. Section 2 provides

a review of the mathematical formulation and principles of

the KLT tracker. Section 3 formulates the linear covariance

analysis of KLT tracker. Section 4 discusses the applica-

tion of proposed uncertainty quantification model to visual

odometry. Section 5 reports the experiment results. Sec-

tion 6 draws some conclusions of the work presented in this

paper.

2. KLT Tracker

Consider two successive images I and J of an object

obtained from two close but distinct baseline locations and

orientations. Let u ∈ IR2×1 be the image space coordinate

of a feature point that assumes an intensity value of I(u) in

image I . The image space deformation model is assumed to

be v = u + d ∈ IR2×1, where d ∈ IR2×1 is the translation

vector in image space. Using this deformation model in

the subsequent image, the brightness constancy assumption

provides the relationship given by:

I(u) = J(u + d) (1)

New feature location v specified in image J corresponds

to the point u in image I . The objective of KLT tracker

is to estimate the translation vector d. Note that more gen-

eral deformation models can be utilized[1] for advecting the

feature.

The KLT tracker estimates d with local intensity gradient

information, under the brightness constancy assumption[1].

This assumption stipulates that J(v) = J(u + d). The tex-

ture around u in image I also gets advected to neighborhood

of u + d in image J . This localized advection of the image

field forms the basis for KLT tracker. Applying the first or-

der Taylor series expansion to this equation leads to:

I(u)−J(u) ≈ dx
∂J(u)

∂x
+ dy

∂J(u)

∂y
= Jxdx+Jydy (2)

Consider a search window of size w × h with its cen-

ter located at u. The symbols w and h indicate the search

window’s width and height respectively. Also assume that

the motion of all pixels within the search window is identi-

cal to motion of u, therefore we have a set of w × h pixels

for which Eq.2 is valid. Translation vector d is then solved

by posing an optimization problem to find d that minimizes

Eq.2 over the search window of interest. Writing Eq.2 for

each pixel patch in the window, we get:
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A

[

dx
dy

]

= B (3)

Where,

A =







∂J(u1)
∂x

∂J(u1)
∂y

... ...
∂J(un)

∂x

∂J(un)
∂y






(4)

B =





I(u1)− J(u1)
...

I(un)− J(un)



 (5)

and u1, u2, ..., un are image point coordinates in the search

window. The translation vector that minimizes the sum of

square difference of Eq.3 using least squares estimation is

given by:

d = (ATWA)−1ATWB (6)

where matrix W is a weighting matrix. Following Lucas

and Kanade[16], diagonal elements of weighting matrix are

defined to be proportional to the difference in the image gra-

dient. This choice of W incorporates the intuition that the

corresponding feature points are not only intensity invari-

ant, but also similar in their 1st order derivatives. Therefore,

each diagonal element of weighting matrix can be written

as:

wii =
1

|I ′(u) − J ′(u)|

Due to the error introduced by ignoring the higher or-

der terms of the Taylor series expansion, an estimate of d

obtained using Eq.6 is generally inaccurate. The loss of

accuracy can also be attributed to evaluation of the image

gradients about the approximate feature location. To re-

solve this problem, the KLT tracker incorporates the use

of Newton-Raphson style iteration scheme to update d it-

eratively until convergence is achieved. Convergence crite-

ria is measured in terms of the error between the original

window and the advected feature in subsequent frames, i.e.

||I(u)− J(u + d̂)||.

Our analysis of the KLT tracker uncertainty propagation

model is naturally compatible with standard and pyramid

implementations of the tracker. It also provides a basis for

uncertainty analysis of the affine implementation. To ease

the complexity of this paper, only the standard KLT tracker

is considered for detailed analysis. Discussions pertaining

to the details of pyramidal and affine implementations of

the KLT tracker are delegated to excellent papers in the

literature[1, 3, 29].

3. Uncertainty Analysis of KLT Tracker

The principle objective of the uncertainty analysis of the

KLT tracker is to develop an approach that provides a prob-

ability value for the tracked feature being the true solution.

In this research, we attempt to derive this information by

using the track sensitivity. The term sensitivity refers to the

variation of the response of the tracking algorithm owing to

the changes in the initial feature point location. We assume

that the source of errors that corrupt the tracking result are

introduced from two distinct sources. They are the uncer-

tainty of initial feature point location, and errors incurred

by the implementation of the KLT tracker. Consider the re-

lation between a deterministic feature point u ∈ IR2×1, its

KLT tracked translation d ∈ IR2×1, and a deterministic lo-

cation v ∈ IR2×1 in tracked image written as:

v = u + d

In practice, u is uncertain. To account for this, the initial

feature uncertainty is modeled as δu, such that the estimated

feature location is written as:

ũ = u + δu (7)

where δu is a random vector of with a mean value of 0 ∈
IR2×1 and covariance matrix of Σu ∈ IR2×2.

The additive model for initial feature uncertainty is a rea-

sonable approximation in practice. It is particularly well

suited for small feature displacements considered in the de-

velopments here. To accommodate our second source of un-

certainty, we assume that the tracking process yields uncer-

tainty δd ∈ IR2×1 that is also a zero mean random variable

with covariance Σd ∈ IR2×2. The tracked feature location

corresponding to the corrupted initial feature point due to

the combined effects of the initial feature uncertainty and

the implementation error can be written as:

ṽ = ũ + d̃ (8)

where d̃ is the estimate of displacement vector solved by

KLT tracker at location ũ. This vector in general does not

equal to the unknown exact displacement d. This is because

of the fact that the local image gradient is evaluated about

the estimated initial feature location. Error in v can thus be

modeled as:

δv = ṽ − v =
(

d̃ − d
)

+ δu = δd + δu (9)

Note that δd is correlated with δu. This is because KLT

process inherently depends on the local image gradients

about the estimated feature location. Covariance of the es-

timated feature location’s uncertainty in subsequent frame

can thus be computed as:
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Σv = E[δvδvT ]

= E[δdδdT ] + E[δuδuT ] + E[δuδdT ] + E[δdδuT ]
(10)

Σv = Σd +Σu + E[δuδdT ] + E[δdδuT ] (11)

Initial feature point uncertainty may be evaluated by var-

ious means in addition to models proposed by Shorey et.

al.[28]. Scale space feature extraction and description in-

sights from SIFT[15], SURF[2] and GLOH[20] may be

used to determine Σu. When tracking features over succes-

sive frames, Σu is the Σv from a propagated step, resulting

in a recursive process for uncertainty quantification.

Σd is the covariance matrix of errors introduced by KLT

tracker due to the variation of the initial feature point lo-

cation. Therefore, it is a function of Σu. We propose to

estimate Σd based on the sensitivity analysis. Uncertainty

in translation can be written as:

δd =
∂d

∂x
δx+

∂d

∂y
δy = dxδx+ dyδy (12)

where x, y denote the image space coordinates of the feature

and δx, δy indicate their variability. The partial derivatives

representing the sensitivity are evaluated about the nominal

feature point location.

Taking the expected value of the outer product, covari-

ance function can be written as:

Σd = E[δdδdT ] (13)

Since gradient is evaluated at a point in image space, typ-

ically at the converged estimate d, local intensity gradient is

treated to be deterministic and evaluated about this realiza-

tion.

E[δdδdT ] =
[

dx dy

]

E

[[

δxδxT δxδyT

δyδxT δyδyT

]] [

dT
x

dT
y

]

(14)

Eq.14 can thus be written as:

Σd =
[

dx dy

]

Σu

[

dT
x

dT
y

]

(15)

Sensitivities dx, dy in Eq.15 are computed by first consid-

ering:

Ad = B (16)

where matrix A and B are defined in Eqs.4 and 5 respec-

tively. Taking partial derivative of Eq.16 with respect to x
leads to:

dx =
∂A

∂x
d +A

∂d

∂x
=

∂B

∂x
(17)

Rearranging terms in Eq.17, we get:

∂d

∂x
= (ATWA)−1ATW

(

∂B

∂x
−

∂A

∂x
d

)

(18)

Terms dy can derived following to the same procedure as in

Eqs.17 and 18, yielding:

dy =
∂d

∂y
= (ATWA)−1ATW

(

∂B

∂y
−

∂A

∂y
d

)

(19)

Note that the existence of solution of Eq.16 guarantees

the existence of solution to the track sensitivity in Eqs.18

and 19. We contrast this solution with UT approach in that

repeated evaluation of tracks about different sigma points

may be necessary to provide a covariance estimate using

the UT.

Following the definition of matrix B in Eq.5, we have:

∂B

∂x
=





∂I(u)
∂x

− ∂J(u)
∂x

|u=u1

...
∂I(u)
∂x

− ∂J(u)
∂x

|u=un



 (20)

∂B

∂y
=







∂I(u)
∂y

− ∂J(u)
∂y

|u=u1

...
∂I(u)
∂y

− ∂J(u)
∂y

|u=un






(21)

where u1, ..., un are the image space coordinates in the

search window about the ith feature ũi. The column vec-

tors (∂A/∂x)d and (∂A/∂y)d are written as:

∂A

∂x
d =







∂2J(u)
∂x2 dx + ∂2J(u)

∂x∂y
dy|u=u1

...
∂2J(u)
∂x2 dx + ∂2J(u)

∂x∂y
dy|u=un






(22)

∂A

∂y
d =







∂2J(u)
∂x∂y

dx + ∂2J(u)
∂y2 dy|u=u1

...
∂2J(u)
∂x∂y

dx + ∂2J(u)
∂y2 dy|u=un






(23)

Note that since the uncertainty propagation model is lin-

earized around converged solution, translation vector d used

in Eqs.22 - 23 is the solution of Eq.6 at final iteration (i.e.

converged solution).

Using the definition of δd in Eq.12, we can derive the

last two terms of Eq.11 as follows.

E{δuδdT } = E

{

δuδuT
[

∂d
∂x

∂d
∂y

]T
}

= Σu

[

∂d
∂x

∂d
∂y

]T

(24)

E{δdδuT } =
[

∂d
∂x

∂d
∂y

]

Σu (25)

Using identities of Eqs.24-25 along with the expression

for E
{

δdδdT
}

, Eq.11 can be written as:
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Σv =
[

dx dy

]

Σu

[

dT
x

dT
y

]

+

Σu +Σu

[

dT
x

dT
y

]

+
[

dx dy

]

Σu

(26)

Note that our formulation of dx and dy involve the lo-

cal linearized approximations evaluated at converged trans-

lation estimate d. To legitimize the truncation of the high

order terms in the Taylor series expansion of d, it is nec-

essary that the initial feature uncertainty be small (i.e. Σu

is small) in order to maintain the bounded growth of the

track uncertainty. Nature of uncertainty propagation indi-

cates heuristically that propagated error can not be smaller

than original uncertainty: Σu ≤ Σv

This is because no new information is available to improve

upon the error of the original feature, about which the gra-

dients are evaluated. Further, the errors incurred in the for-

ward track propagation process are non decreasing, depend-

ing on the viewpoint, illumination and image deformation

associated with the image formation process. Based on this

intuition, we know that propagated uncertainty will eventu-

ally violate the assumptions in the KLT tracker. To quan-

titatively monitor this growth, we propose a health metric

associated with each feature track as a function of its prop-

agated uncertainty. When the principle axis length of Σv is

larger than a predefined threshold, we infer that such feature

can no longer be tracked accurately and therefore should be

re-initialized. Although our uncertainty propagation is con-

servative, this heuristic measure is important for guidance

and control decision logics based upon surface reconstruc-

tion and feature based localization operations. Furthermore,

when tracks associated with independently moving objects

are available in the same field of view, the eigenvalues and

eigenvectors of Σv serve as a means of prediction of fea-

ture track intersection. Such features with overlapping co-

variance ellipses can therefore be suppressed to avoid gross

errors due to feature disambiguation.

The mathematical formulation of the feature uncertainty

propagation through sensitivity analysis of KLT-tracker is

now detailed. Fig.1 is a summary of the feature track un-

certainty characterization process. First, the feature point

is initialized through a chosen feature extraction algorithm,

and the feature track uncertainty is initialized with image

feature uncertainty method. For every KLT-tracking step,

we estimate the propagated feature uncertainty using Eq.26.

Resulting Σv is the estimated feature uncertainty in the

tracked frame. Its principle axes lengths are then tested

against pre-defined threshold values. If the principle axis

length of Σv is larger than the threshold, we conclude that

the feature uncertainty is too large and is unsuitable for fur-

ther tracking, and the track is marked for termination. On

the other hand, if Σv is smaller than the threshold value,

Σu is updated with Σv for propagation on to sub-sequent

frames.

Figure 1: Flowcart of proposed feature uncertainty propa-

gation pipeline

Note that all the information required for computation

of sensitivity used in uncertainty quantification process be-

side of the second order derivatives terms are available from

intermediate steps of the KLT tracker. Therefore, the com-

putational cost of proposed algorithm is less than alternative

approaches for uncertainty quantification.

4. Application to Visual Odometry

Given the fact that the core of several VO solutions is

an optimization framework that minimize the error between

the feature track measurements and the measurement model

output with estimated parameters, the uncertainty informa-

tion of the feature tracks can be use as a statistical confi-

dence measure to improve the estimation accuracy.

Wrongly established feature correspondences or out-

liers are one of the critical source of errors in VO solu-

tions. There is a need of the systematic and robust pro-

cedures to identify outliers prior to the estimation process.

Common solution to this problem relies on iterative out-

lier ejection framework such as RANSAC. Alternatives to

RANSAC such as ARRSAC[24] and PROSAC[6] uses the

prior knowledge of the feature correspondence confidence

measurement to accelerate the outlier ejection process in

an iterative fashion identical to RANSAC. PROSAC has

shown its improved performance over RANSAC, but ma-

jority of the VO solution are still preferring RANSAC. This

is due to the fact that the lack of an efficient tool to compute

the prior information required by PROSAC. The uncertainty

quantification model proposed in early section of this paper

can be serve as the source of the prior information required

by PROSAC.

When the image motion satisfies assumptions of the KLT

tracker, feature correspondences established by KLT tracker
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has less outliers in comparison to other descriptor matching

based algorithms. However, feature correspondence estab-

lished by KLT tracker suffers from drift issues caused by

affine transformation and image noise. The drift in feature

location and the small amount of outliers cause the error

propagation in VO solution. This paper proposes an aggres-

sive threshold technique, i.e. implement a small threshold

value T in Fig.1. This strategy allows only the feature cor-

respondences with good uncertainty characteristic to propa-

gate into future image frame, and be ultimately used in VO

algorithm for further processing and thus reduces the VO

drift.

5. Experiment

Two experiments are presented in this section to demon-

strates the functionality of proposed uncertainty quantifica-

tion method and its application to VO. The first experiment

is designed to validate the uncertainty quantification of KLT

tracker established feature tracks. A sequence of 10 im-

ages that are observations of an unstructured terrain-landing

experiment[18] are inputs to this experiment. Asus Xtion

Pro RGBD camera mounted on the Holonomic Omnidirec-

tional motion emulator robot (HOMER)[7] is using for data

collection. A set of 12 feature points are extracted from the

first image, and tracked across 10 images with both esti-

mated standard and pyramidal implementation of the KLT

tracker. Proposed algorithm is then applied to each fea-

ture tracks for computes their covariance bound. When the

image motion is small, both standard and pyramid imple-

mented KLT tracker are expected to return identical results.

However, one expects the pyramidal KLT tracker to yield

more accurate results when there are large feature motions

across images. Proposed KLT tracker uncertainty propa-

gation approach is expected to be able to capture the track-

ing error incurred across different implementations. Experi-

mental ground truth for this experiment is provided by pyra-

midal affine KLT tracker which is known to be of higher

accuracy. These results are shown in Fig.2.

Fig.2 shows that some feature tracks slowly diverge from

true solution because the pure translation model is used

here. The true motion is a combination of rigid rotation and

translation that cannot be approximated by pure translation

model over large time periods. It is expected that the tracked

feature diverges from true solution. It is of consequence to

observe that the proposed uncertainty propagation model is

able to capture the error divergence accurately. When com-

paring the tracking result between the standard KLT tracker

and the pyramidal implementation, we see that some of the

same feature tracks yield different results. This is caused by

the magnitude of image motion across image frames. The

proposed algorithm correctly captures the errors incurred

by implementations in Fig.2(a) and (b), such that it is com-

patible with both pyramid implemented and standard KLT

tracker.

For better illustration of the proposed algorithm’s perfor-

mance, feature f1 in Fig.2 is zoomed in and the propagated

covariance at each frame is plotted in Figs.3. Fig.3 shows

the track of f1 across the 10 frames, within a bounding box

of 20 × 20 pixels. Covariance of the track at each frame is

shown using the red ellipse. Fig.3(a) shows an overlay of

the affine and pyramidal tracks of the feature. Similar plots

for the results obtained using the standard KLT tracker are

shown in Fig.3(d). Figs.3 clearly show that true feature lo-

cation is always bounded by estimated 3 − σ covariance

through proposed algorithm. And the estimated uncertainty

is representative of the actual error in the feature track. A

comparison of Fig.3(a) and Fig.3(e) reveals that the stan-

dard KLT tracker incurs more error than the pyramidal im-

plementation. However, the sensitivity calculations of the

present work form a data driven basis for both of these

algorithms to evaluate their own errors. A comparison of

Figs.3(c-d) and Figs.3(f-h) reveals this fact.

The second set of experiment is to demonstrates the ap-

plication of proposed algorithm to VO pipeline. The VO

algorithm that is used in this experiment is a stereo cam-

era VO algorithm that recently reported in [31]. The input

data to this experiment is also part of the HOMER project,

but is captured with a Point Grey Bumblebee XB3 stereo

camera. Initial features in this experiment are first extracted

with SIFT method. KLT tracker is applied to computes both

stereo and temporal feature correspondence, while the fea-

ture track uncertainties are computed with proposed algo-

rithm. 200 stereo measurement frames are captured for this

experiment, the relative camera pose across each frame is

computed by stereo VO method introduced in [31]. A 3D

surface is estimated from stereoapsis for every 20 frame,

and transforms to initial camera frames for estimation of

global 3D map. The covariance threshold value is con-

figures to 2 for the covariance thresholding technique.The

choice of the covariance threshold value can be computed

from the uncertaity analysis of the VO algorithm. The co-

variance threshold is choose emperically, but it is also posi-

ble to select a statiscally meaningful threshold value based

on the sensitivity analysis of the downstream pipeline. For

example, when there is a specific accuracy in the stereo re-

construction 3D map is given, a sensitivity analysis base on

the stereopsis can be used to compute the maximum covari-

ance allowable from the feature track. And the length of the

covariance principle axis can be selected as the covariance

threshold. However, do note that the proposed uncertainty

propagation procedure in KLT tracker is based on local lin-

earization, uncertainty propagation is only valid within the

range where the linearization assumption is valid.

Due to the lack of ground truth, the VO solutions of the

paper are compared with the transformation estimated by

iterative closest points(ICP) algorithm implemented in the
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(a) (b)

Figure 2: Feature tracks and associated covariance estimates from (a) pyramid implemented KLT tracker(b) standard KLT

tracker. Yellow line indicating location of principle 3 − σ points at each frame, red ellipse indicating 3 − σ bound at final

frame, magenta dot indicating feature location tracked by KLT tracker, and cyan dot indicating true feature location

(a) Pyramid KLT tracker (b) F = 1 (c) F = 3 (d) F = 9

(e) Original KLT tracker (f) F = 1 (g) F = 3 (h) F = 9

Figure 3: (a - d) Feature tracks and propagated covariance of feature f1 in Fig.2(a) with pyramid implementation of KLT. (e

- h) with original LT tracker. Yellow line indicates propagated σ bound along with largest principle axis direction, red ellipse

indicates σ bound at last frame. White dots indicate KLT tracked feature points. Blue dots indicate affine-pyramid KLT

tracked feature points. (b - d), (f - h) Tracked feature and estimate error covariance bound at each frame, where F indicates

frame index.

PCL library[27]. Although there is no guarentee the con-

verged ICP solution is the absolute ground truth, it may be

considered as the statistical optimal solution, owing to the

fact that the number of 3D points using in ICP are much

larger than that used by the VO. The errors in position esti-

mated by VO with and without using thresholding technique

are shown in Fig.5. Fig.5 clearly shows that the proposed

thresholding technique yields better drift performance, as

compared to the VO estimates obtained with no threshold-

ing. Fig.4 shows the error in relative translation accros each

stereo measurement step and the standard deviation bounds

of the relative translation computed by the VO with fea-

ture track covariance as one of the input. Fig.4 shows that

the differences between the error of relative translation is

very small with RMS (root mean square) error of covariance

thresholding given [0.008, 0.0045, 0.0012], while the RMS

error of original VO solution as [0.0081, 0.0046, 0.0013].

Note that the accumulation of small errors leads to signif-
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Figure 4: Error in VO estimate camera translation across each time step and corresdonding VO estimated standard deviation

bound with covariance thresholding(COV TH) and original VO output(ORG)

Figure 5: Error in position compare to labarotary truth gen-

erated with ICP

(a)

(b)

Figure 6: Side view of the reconstructed 3D map with VO

algorithm, where cone indiactes camera location when a lo-

cal 3D map is generated: (a) Without covariance threshold-

ing technique. (b) With covariance thresholding technique.

The alignment of stereo reconstructed 3D map indicates the

accuracy of estimate camera pose.

icant drift after a long propagation time. Estimated stan-

dard deviation bounds of the VO output also indicates that

covariance thresholding yields more accurate estimates. A

comparison of the reconstructed global 3D map is shown in

Fig.6, the 3D map misalignment in the original VO solution

suggests the same observation where covariance threshold-

ing results in a better drift characterization.

6. conclusion

An approach to evaluate the uncertainties associated with

the feature tracks computed by using the KLT tracker and

its application to visual odometry is presented in the paper.

Linear covariance analysis is derived by utilizing the tex-

ture based image gradients evaluated about the feature track

that uses a simple displacement model for image deforma-

tion. It is shown that the proposed approach yields con-

sistent covariance bounds for both standard and pyramidal

implementations of the tracker. More accurate affine invari-

ant tracker is used in lieu of the true feature tracks when

experiment data with no ground truth is available for vali-

dation of the proposed approach. Results of the proposed

approach are utilized to evaluate the uncertainties of the

relative pose estimates obtained under perspective and or-

thographic projection models. Uncertainties of the relative

motion estimates obtained by the factorization approach are

derived as a function of the feature track uncertainties that

are supplied as an input to the algorithm. Although conser-

vative, the approaches presented in the paper form a basis

for optimism for the realization of an automated means of

feature correspondence management. This is necessary in

robust simultaneous localization and mapping applications.

Images obtained from physical experiments are used to val-

idate the methods presented in the paper.
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