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Abstract

This paper introduces a novel large dataset for example-

based single image super-resolution and studies the state-

of-the-art as emerged from the NTIRE 2017 challenge. The

challenge is the first challenge of its kind, with 6 compe-

titions, hundreds of participants and tens of proposed so-

lutions. Our newly collected DIVerse 2K resolution im-

age dataset (DIV2K) was employed by the challenge. In

our study we compare the solutions from the challenge to a

set of representative methods from the literature and eval-

uate them using diverse measures on our proposed DIV2K

dataset. Moreover, we conduct a number of experiments

and draw conclusions on several topics of interest. We con-

clude that the NTIRE 2017 challenge pushes the state-of-

the-art in single-image super-resolution, reaching the best

results to date on the popular Set5, Set14, B100, Urban100

datasets and on our newly proposed DIV2K.

1. Introduction

Example-based single image super-resolution (SR) aims

at full restoration of rich details (high frequencies) in im-

ages based on prior examples under the form of low res-

olution (LR) and corresponding high resolution (HR) im-

ages. The loss of details / contents can be due to various

degrading factors such as blur, decimation, noise or hard-

ware limitations (e.g. camera sensors). SR is an ill-posed

problem because for each LR image patch the number of

corresponding HR image patches can be very large.

Single image super-resolution as well as image restora-

tion research literature spans over decades [36, 20, 4, 13, 16,

3, 15, 14, 6, 32, 54, 30, 17, 23, 12, 47, 48, 10, 21]. Nonethe-

less, the recent years showed tremendous progress as shown

in Fig. 1. The performance of the top methods have contin-

uously improved [54, 48, 21, 26] as the field has reached

maturity.

There is a continuous need for standardized SR bench-

marks to allow for comparison of different proposed meth-

ods under the same conditions. Most of the recent SR

works adopted a couple of datasets like the 91 train images
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Figure 1. Representative methods from the recent years and their

average PSNR performance on five datasets for scale ×4.

proposed by Yang et al. [54] and the validation datasets

Set5 [5], Set14 [56], B100 [31, 48] brought together by

Timofte et al. [47, 48], or the more recent Urban100 [19].

The bicubic downscaling (imresize from Matlab) is the

most used degradation operator to simulate the HR to LR

transformation.

In this work, we propose a novel DIV2K dataset with DI-

Verse 2K resolution high quality images collected from In-

ternet. It has 1000 images with considerable higher resolu-

tion than the popular datasets mentioned before. Moreover,

we organized the first example-based single image super-

resolution online challenge which used the DIV2K dataset.

The NTIRE 2017 SR challenge 1 [46] employs two types of

degradations: the standard bicubic and the unknown down-

scaling operators aka downscaling operators known only

through train data of LR and corresponding HR images.

Another contribution of this paper is a study of our newly

proposed DIV2K in relation with the achieved performance

by the winners of the NTIRE 2017 SR Challenge and rep-

resentative methods from recent years. We report results

using a selection of image quality measures and investigate

correlations and limits in SR benchmarking.

The remainder of the paper is structured as follows. Sec-

tion 2 introduces the DIV2K dataset. Section 3 reviews the

NTIRE 2017 SR Challenge and its settings. Section 4 intro-

1http://www.vision.ee.ethz.ch/ntire17/
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DIV2K 100 validation images DIV2K 100 test images
Figure 2. Visualization of proposed DIV2K validation and test images. DIV2K contains also 800 train images.

duces the image quality assessment (IQA) measures, Sec-

tion 5 - the datasets, and Section 6 - the methods from our

study. Section 7 discusses the experiments and interprets

the achieved results, while Section 8 concludes the paper.

2. Proposed DIV2K dataset

We propose the DIV2K dataset 2, a novel DIVerse 2K

resolution image dataset for benchmarking example-based

single image super-resolution (see Fig. 2. DIV2K is in-

tended to complement the existing SR datasets (see Fig. 5)

and to further increase the (content) diversity.

Source: We manually crawled 1000 color RGB images

from Internet paying special attention to the image quality,

to the diversity of sources (sites and cameras), to the image

contents and to the copyrights. DIV2K is meant for research

purposes.

Resolution and quality: All the 1000 images are 2K reso-

lution, that is they have 2K pixels on at least one of the axes

(vertical or horizontal). All the images were processed us-

ing the same tools. For simplicity, since the most common

magnification factors in the recent SR literature are of ×2,

×3 and ×4 we cropped the images to multiple of 12 pixels

on both axes. Most of the crawled images were originally

above 20M pixels. The images are of high quality both aes-

thetically and in the terms of small amounts of noise and

other corruptions (like blur and color shifts).

Diversity: We collected our images from dozens of sites.

A preference was made for sites with freely shared high

quality photography (such as https://www.pexels.

com/ ). Note that we did not use images from Flickr, In-

stagram, or other legally binding or copyright restricted im-

ages. We only seldom used keywords to assure the diversity

for our dataset. DIV2K covers a large diversity of contents,

ranging from people, handmade objects and environments

2https://data.vision.ee.ethz.ch/cvl/DIV2K/

(cities, villages), to flora and fauna, and natural sceneries

including underwater and dim light conditions.

Partitions: After collecting the DIV2K 1000 images we

computed image entropy, bit per pixel (bpp) PNG compres-

sion rates and CORNIA scores (see Section 7.6) and applied

bicubic downscaling ×3 and then upscaling ×3 with bicu-

bic interpolation (imresize Matlab function), ANR [47] and

A+ [48] methods and default settings. We randomly gener-

ated partitions of 800 train, 100 validation and 100 test im-

ages until we achieved a good balance firstly in visual con-

tents and then on the average entropy, average bpp, average

number of pixels per image (ppi), average CORNIA quality

scores and also in the relative differences between the aver-

age PSNR scores of bicubic, ANR and A+ methods. Table 1

summarizes the main characteristics of DIV2K validation

and test partitions in comparison with the most popular SR

datasets. Fig. 2 visualizes the 100 images for validation and

the 100 images for testing of the DIV2K dataset.

3. NTIRE 2017 SR Challenge

The NTIRE 2017 challenge on example-based single im-

age super-resolution [46] was the first of its kind and had as

objectives: to gauge the state-of-the-art in SR, to facilitate

comparison of different solutions on a novel large dataset -

DIV2K, and to propose more challenging SR settings.

Tracks and competitions The challenge had two tracks:

Track 1 for bicubic downscaling (‘classic’) and Track 2

for Unknown downscaling. For Track 1 the degradation

is the popular bicubic downscaling (Matlab imresize func-

tion) and facilitates easy deployment of the recent solutions

that assumed this degradation. Track 2 is more challeng-

ing as it uses a combination of blur and decimation ‘un-

known’ under explicit form to the challenge participants,

but known through exemplars of LR and corresponding HR

images. Each track corresponds to 3 competitions for the
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Figure 3. NTIRE 2017 challenge tracks visualized for image ‘0837’ from DIV2K. Best zoomed in on screen.

usual 3 downscaling factors (×2,×3,×4). A visualization

of the tracks and competitions is shown in Fig. 3. The

hosting platform for the competitions is CodaLab 3. For

each competition the LR and HR train images (from the

DIV2K train set) were provided for learning models during

the development (training) phase. The following validation

phase gave the opportunity to the participants to test their

solutions on the LR validation images (from DIV2K valida-

tion set) and compare their scores through an online valida-

tion server and associated leaderboard. The final evaluation

(test) phase provided the LR test images (from DIV2K test-

ing set) and invited the submission of the HR results before

the challenge deadline. PSNR and SSIM (see Section 4)

are the challenge main quantitative quality assessment mea-

sures for the image restoration results. A 6 + scalefactor

pixels image boundary is ignored in the evaluation.

Challenge results Each competition had on average 100

registered participants and 20 teams submitted results,

code/executables and factsheets for the final test phase. All

these competing solutions and the achieved results on the

DIV2K test data are described in the NTIRE 2017 SR chal-

lenge report [46]. All the proposed challenge solutions, ex-

cept WSDSR [7], employ end-to-end deep learning of con-

volutional neural networks (CNN) [25] and use GPU for

both training and testing. They propose a diversity of ideas

and design details and generally build upon and go beyond

the very recent proposed SR works [10, 49, 21, 26]. In Fig. 4

we plot the average PSNR vs. runtime results of the chal-

lenge solutions in comparison with several other representa-

tive methods and in Table 2 we show results for a selection

of them. The top challenge solutions are consistent across

all 6 competitions, showing that the solutions proposed for

Track 1 with bicubic downscaling generalize well to Track

2 unknown downscaling if sufficient training examples are

provided. The PSNR and the SSIM scores correlate well.

The scores on Track 2 are generally worse than on Track

1 for the same methods/solutions and reflects the increased

difficulty of the unknown downscaling setup.

4. Image Quality Assessment (IQA)

There is a large interest in the automatic assessment of

the image quality and numerous measures have been pro-

posed [41, 57, 34, 29]. According to the presence and the

3https://competitions.codalab.org/

use of a ground truth reference image there are two main

categories: full reference measures and no-reference mea-

sures.

When a ground truth image G with N pixels is available

the quality of a corresponding (degraded or restored) im-

age I can be defined as the pixel-level fidelity to the ground

truth. Representatives are Mean Square Error (MSE) de-

fined by MSE = 1

N

∑N

i=1
(Gi − Ii)

2
where Gi (or Ii) is

the i-th pixels of G (or I), and Peak Signal-to-Noise Ratio

(PSNR), PSNR = 10 log
10

(

MAX
2

G

MSE

)

where MAXG is

the maximum possible pixel value of the image, here 255.

However, small shifts in the content of I leads to (very) poor

MSE and PSNR scores even when the contents are iden-

tical. Therefore, another group of measures amounts for

such structural similarity. If MSE and PSNR measure abso-

lute errors the Structural Similarity index (SSIM) [50] 4

is a perception-based model that considers image degrada-

tion as perceived change in structural information and In-

formation Fidelity Criterion (IFC) [40] 5 assesses the im-

age quality based on natural scene statistics.

From the no-reference measures we chose Codebook

Representation for No-Reference Image Assessment

(CORNIA) [55] 6, a model learned to map images to av-

erage human quality assessments. CORNIA is a perceptual

measure which does not use a reference image.

All the above selected measures were not intended for

measuring the quality of a super-resolved image. However,

they tend to generalize well for different kinds of image dis-

tortions. In particular, IFC was shown to have a strong cor-

relation with the human assessed perceptual quality for im-

age super-resolution results [53]. While working without

a reference image, CORNIA proved superior to many full

reference measures in assessing perceptual quality. Very re-

cent CORNIA was shown to achieve high correlation to the

human perception also for the image super-resolution task

on a large dataset with and without retraining its model [29].

We use the CORNIA with the original model and the default

settings.

The SR task aims at recovering the original contents (de-

4https://ece.uwaterloo.ca/˜z70wang/research/

ssim/
5http://live.ece.utexas.edu/research/quality/

ifcvec_release.zip
6http://www.umiacs.umd.edu/˜pengye/research/

CORNIA_release_v0.zip
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Figure 4. Runtime vs. PSNR results on NTIRE 2017 Challenge tracks, DIV2K test data.

Dataset images CORNIA ppi bpp PNG entropy

Set5 5 21.50 (±20.00) 113491 12.45 (±1.77) 7.37 (±0.51)

Set14 14 21.56 (±12.52) 230202 12.57 (±3.89) 7.03 (±0.89)

B100 100 18.46 (±12.74) 154401 14.12 (±2.76) 7.30 (±0.44)

Urban100 100 5.80 (±19.26) 774313 14.01 (±2.76) 7.57 (±0.36)

DIV2K validation 100 15.86 (±15.38) 2835028 12.69 (±2.69) 7.33 (±0.83)

DIV2K test 100 17.47 (±14.55) 2757182 12.64 (±2.33) 7.50 (±0.47)

DIV2K test ⇓ 2 bic. 100 17.93 (± 13.09) 689295 13.41 (± 2.38) 7.49 (± 0.47)

DIV2K test ⇓ 4 bic. 100 18.26 (± 13.08) 172323 14.40 (± 2.45) 7.48 (± 0.47)

DIV2K test ⇓ 8 bic. 100 23.20 (± 14.09) 43166 15.37 (± 2.44) 7.47 (± 0.46)

DIV2K test ⇓ 16 bic. 100 31.34 (± 15.76) 10849 16.49 (± 2.32) 7.45 (± 0.45)

DIV2K test ⇓ 2 crop 100 16.93 (± 14.55) 689295 13.79 (± 2.45) 7.52 (± 0.35)

DIV2K test ⇓ 4 crop 100 22.59 (± 15.75) 172323 14.09 (± 2.67) 7.37 (± 0.45)

DIV2K test ⇓ 8 crop 100 30.85 (± 18.66) 43166 14.12 (± 3.06) 7.14 (± 0.62)

DIV2K test ⇓ 16 crop 100 41.32 (± 19.76) 10849 14.20 (± 3.49) 6.88 (± 0.82)

Table 1. Main characteristics of the SR datasets. We report average

and standard deviation.

tails / high frequencies), therefore an ideal IQA measure

should use and reflect a fidelity to the ground truth when

available. In practice, however, often the ground truth is not

available and, therefore, plausible and perceptually qualita-

tive super-resolved images are desirable as long as the in-

formation from the LR image is preserved. For perceptual

image super-resolution studies we refer to [53, 26, 29].

Most of the recent SR literature deploys and validates

models on either the luminance component of the image (Y

channel from YCbCr color space) or on the full RGB im-

age. The texture is captured by the luminance component

while the chroma is less important since the human eye is

less sensitive to the changes from the chroma components.

Typically the models working on Y channel reconstruct the

color super-resolved image by processing the Y channel and

simply upscaling the chroma Cb and Cr channels through

interpolation (such as bicubic) to then convert the result to

RGB color space.

5. Datasets

In this study we use the most common datasets from SR

literature (shown in Fig. 5). We mention also LIVE1 [41,

53], L20 [49, 27], ImageNet [38], Kodak 7 or Super-

Tex136 [8] that are less popular for single-image SR.

Train91 was proposed by Yang et al. [54] for training. It

has 91 RGB images with mainly small sized flower images.

Set5 was used in [5] and adopted under the name ‘Set5’

in [47]. It contains five popular images: one medium size

image (‘baby’, 512 × 512) and four smaller ones (‘bird’,

‘butterfly’,‘head’, ‘women’).

Set14 was proposed by Zeyde et al. [56]. It contains 14

commonly used images in the image processing literature.

The images in Set14 are larger and more diverse than those

in Set5.

B100 represents the set of 100 testing images from the

Berkeley Segmentation Dataset [31] as adopted in [48]. It

covers a large variety of real-life scenes.

Urban100 was introduced by Huang et al. [19]. It con-

sists from 100 clean from urban environments with repeti-

tive patterns and high self-similarity.

DIV2K is our proposed dataset as introduced in Section 2

and is used for the NTIRE 2017 SR Challenge.

In Table 1 we summarize main characteristics of the SR

datasets. According to the perceptual image quality as-

sessed by CORNIA all the datasets have good image qual-

ity, Urban100 and DIV2K being at the top. The average

image size (pixels per image or ppi) varies from 113491

7http://r0k.us/graphics/kodak/
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Set5

Set14
Figure 5. Visualization of standard popular SR datasets:

Set5, Set14, B100, and Urban100. B100 Urban100

pixels for Set5 to 2.8million pixels for DIV2K. DIV2K im-

ages are about 4 times larger than those from Urban100. In

terms of entropy computed over the grayscale images the

datasets are comparable, but Set14 has the lowest entropy.

Also, the datasets are comparable in terms of bits per pixel

(bpp) required by PNG for lossless compressing the images.

Both bpp and image entropy are indicators of the amount of

information present in the image per image pixel. Since

CORNIA score, bpp, and entropy are comparable for all the

datasets, the differences are made by the number and the

resolution of the images. Thus, as intended, DIV2K has the

best diversity in semantic contents (similar with B100) and

the highest resolution (∼ 4× more than Urban100).

6. Methods

In this study we use the top methods from NTIRE 2017

SR Challenge [46], as well as several representative meth-

ods from the recent literature.

6.1. NTIRE 2017 SR challenge methods [46]

SNU CVLab1 of Lim et al. [28] is the winner of the

NTIRE 2017 challenge. It builds onto SRResNet architec-

ture [26]. The building block removes the batch normaliza-

tion layers from the residual block (ResBlock) in [18] and

a residual scaling layer (constant multiplication with 0.1) is

added after the 2nd convolutional layer of the block. The

method has 36 ResBlocks end-to-end trained on the DIV2K

train data, and for the Track 2 of the challenge used also

crawled Flickr images to generate additional train data be-

sides the DIV2K train data.

SNU CVLab2 is a compactly designed approach meant for

HR estimation at multiple scales simultaneously. Most of

the implementation and architecture design is shared with

the SNU CVLab1 single-scale solution. SNU CVLab2

trades the brute performance of SNU CVLab1 for increased

efficiency at train and runtime.

HelloSR is a winner of NTIRE 2017 challenge based on a

stacked residual-refined network design.

Lab402 proposed by Bae et al. [2] is the third winner of

NTIRE 2017 challenge. Lab402 solution consists from a 41

layers Haar wavelet residual network.

WSDSR is a very recent self-similarity based method

based on BM3D and a newly proposed Wiener filter. It was

proposed by Cruz et al. [7].

6.2. Other representative methods

We use a selection of methods from [48, 49, 33], the

seminal CNN methods [9, 21, 26], and additionally a self-

similarity based method [19].

Bicubic interpolation is probably the most employed tech-

nique for interpolation of images in practice and often a

basic component in more involved SR methods (such as

A+ [48] and VDSR [21]). Each pixel in the upscaled im-

age is a bicubic interpolation over a support LR patch of

pixels.

Yang of Yang et al. [54] employs sparse coding and sparse

dictionaries for compact modeling of the LR-HR train ex-

amples and sharp HR reconstruction.

Zeyde method of Zeyde et al. [56] builds upon Yang and

efficiently learns sparse dictionaries using K-SVD [1] and

Orthogonal Matching Pursuit for sparse solutions.

ANR (Anchored Neighborhood Regression) of Timofte et

al. [47] relaxes the sparse decomposition from Yang and

Zeyde to a ridge regression solved offline and stored per

each dictionary anchor for large speed benefits.

A+ or Adjusted ANR of Timofte et al. [48] improves over

ANR by learning regressors from all the training patches in

the local neighborhood of the anchor.

IA is the Improved A+ method [49] which uses a couple of

proposed techniques such as: data augmentation, enhanced

prediction, cascading, hierarchical search with larger dictio-

naries, and context reasoning.

SRCNN of Dong et al. [9, 10] directly learns to

map patches from LR to HR images with a deep CNN

model [25].

VDSR is a VGG16 architecture [43] based CNN model

proposed by Kim et al. [21]. In comparison with SRCNN it

goes ‘very deep’ with the convolutional layers and signifi-

cantly boosts the achieved performance.

PSyCo proposed by Perez et al. [33] builds upon A+ frame-

work and efficiently reduces the manifold span to better use

the train data and improve the model capacity.
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SRResNet is a ResNet architecture [18] based CNN model

proposed by Ledig et al. [26] which goes deeper than VDSR

for better performance.

SelfEx is a self-similarity based method introduced by

Huang et al. [19] optimizing over the LR image.

7. Experimental results

7.1. Scaling factors to benchmark

Most recent SR works validate their methods for 3 down-

scaling factors. The Pearson correlation is above 0.97

(ρ > 0.97) for the PSNR scores on the DIV2K test data

of any two competitions (scaling factors) of Track 1 bicu-

bic of the NTIRE 2017 SR Challenge [46]. The SSIM

scores reported for ×2 and ×3 have ρ = 0.99, while be-

tween ×2 and ×4 ρ = 0.88. It is clear that validating on

all these scaling factors for the same degradation operator

(bicubic downscaling) is redundant and perhaps the efforts

should be placed elsewhere, on better IQA measures and

more challenging SR setups. The PSNR differences be-

tween the results of different challenge methods are larger

for the smallest scale factor ×2, while for SSIM the dif-

ferences get larger for higher scales. The higher scales are

the more challenging ones and the perceptual differences

are also potentially larger between different methods. If we

analyze the reported results on the Set5, Set14, B100, Ur-

ban100 we come to the same conclusion that for low scal-

ing factors (×2) both PSNR and SSIM scores of the recent

methods are rather large and difficult to assess by the human

perception. Therefore we recommend to work with ×4 and

to push further to ×8 and above for extreme SR validation

and benchmarking. Already a couple of SR works [53, 26]

report on ×8 settings.

In the unknown downscaling setting (Track 2 challenge)

the degradation operators are different for each scaling

setup and both the achieved performances of the SR meth-

ods and their correlations are lower. Noteworthy is that

most of the top methods from Track 1 generalize well and

deliver consistent performances also on Track 2 while keep-

ing their relative ranking.

7.2. Ensembles for enhanced prediction

The top ranked entries SNU CVLab1, SNU CVLab2,

HelloSR, UIUC-IFP and ‘I hate mosaic’ in the NTIRE

2017 SR Challenge use ensembles of HR predictions. They

are flipping and/or rotating by 90◦ the LR input image

then process them to achieve HR corresponding results and

align these results back for the final HR average result.

This enhanced prediction is one of the seven ways to im-

prove SR described in [49]. In our experiments the top

methods without the enhanced prediction achieve 0.1 to

0.25dB lower PSNR results on DIV2K test data. Since

the unknown downscaling depends on the image orienta-

tion, SNU CVLab1, SNU CVLab2, and HelloSR propose

Method computed on Y from YCbCr computed on RGB

PSNR SSIM IFC CORNIA PSNR SSIM IFC CORNIA

SNU CVLab1 30.56 0.853 3.39 26.4 29.09 0.837 3.41 26.2

SNU CVLab2 30.51 0.852 3.38 27.1 29.04 0.836 3.40 27.1

Lab402 30.30 0.846 3.28 28.9 28.83 0.830 3.30 28.8

HelloSR 30.27 0.846 3.26 28.2 28.80 0.830 3.28 28.1

VDSR[21] 29.58 0.828 2.91 35.2 27.98 0.808 2.93 35.3

A+[48] 29.15 0.815 3.05 46.3 27.58 0.793 2.86 46.5

Bicubic 28.12 0.782 2.39 65.5 26.64 0.760 2.27 65.3

Table 2. Quantitative results on the test set of DIV2K with

×4. More results are available at https://www.vision.ee.

ethz.ch/ntire17/SR_challenge/

to train different models eventually with different losses and

to average their predictions. In this case the improvements

are only marginal on the DIV2K dataset.

7.3. IQA scores on luma (Y) vs. on RGB

Most of the recent SR literature report performance

scores on the luma (intensity) component of the image, typ-

ically Y from YCbCr color space. The human visual system

is much more sensitive to the image texture as represented

by the luma component than to the chroma components.

Moreover, the luma component captures most of the image

high frequencies / rich details while the chroma generally

does not. The consequence is that bicubic downscaling of

an image with a typical 2 or 4 factor leads to a dramatic loss

of high frequencies (rich details) while the low frequencies

are usually preserved and thus the luma component amount

for most of the lost information.

NTIRE 2017 SR Challenge works on RGB images and

uses the RGB color space for evaluation. We computed also

the performance results on the luma component Y from the

YCbCr color space after converting the RGB images. Some

results are in Table 2. There is a very strong correlation

(Pearson correlation ρ > 0.96) between the PSNR results

computed on Y luma and those on RGB for the NTIRE 2017

SR Challenge methods on each DIV2K validation and test-

ing datasets. However, the correlation is weaker for SSIM

which is closer correlated to the human perception. We con-

clude that if for reconstruction fidelity (measured by MSE

or PSNR) reporting on Y is comparable with reporting on

RGB, whenever the perceptual quality is targeted (measured

by full-reference SSIM, IFC or no-reference CORNIA) for

color images the RGB space could be better suited.

7.4. IQA measures for SR

As previously mentioned our selection of IQA measures

is motivated by reconstruction fidelity (absolute errors) and

prior studies on the most robust automatic measures for per-

ceptual image quality [34, 55, 53, 29]. From the considered

IQA measures CORNIA is the best at perceptual IQA be-

ing followed by IFC, SSIM, PSNR, MSE, in this order, as

shown in [53, 29] for the SR task. Some results are in Ta-

ble 2.
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Figure 6. PSNR performance on DIV2K (bicubic downscaling ×4) can be predicted by the image quality (CORNIA score), PNG com-

pression rate (bpp), image entropy, or the PSNR of the bicubic downscaled and upscaled LR image (bic2). For each predictor we sort the

images and compute the Pearson correlation (ρ) with the PSNR results of the methods: SNU CVLab1, HelloSR, bicubic and bic2. PSNR

gains over bicubic are reported on the bottom row.

bicubic downscaling ×1 ×2 ×4 ×8 centered cropping ×1 ,×2, ×4, ×8

Figure 7. Bicubic downscaling versus centered cropping as seen for a central image patch of fixed size.
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Figure 8. Reducing the ppi of the DIV2K test images by bicubic downscaling or by centered cropping has little influence on the relative

performance of the winners of NTIRE 2017 SR Challenge.

7.5. Runtime and performance

Fig. 4 shows the trade-off between runtime and perfor-

mance for SR methods. The runtimes of the non-CNN

models are reported on CPU for Matlab implementations.

RAISR [37] is reportedly the fastest from the anchored fam-

ily of methods (ANR, A+, IA, PSyCo) with CPU runtimes

comparable to the fastest GPU methods from our study, but

its PSNR performance is below A+. At the other extreme
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WSDSR [7] is the slowest and the best performing among

the non-CNN methods on bicubic downscaling settings.

The best performing methods are also among the slowest

ones. Fig. 1 reports a timeline performance (×4, bicubic

downscaling, PSNR on Y channel) on five datasets for rep-

resentative top methods. NTIRE 2017 challenge methods

largely improve over prior art.

7.6. Predictors for SR performance

How much a SR method can restore / improve a LR im-

age? We propose and study a couple of predictors for SR

performance in the absence of the ground truth.

CORNIA is a top no-reference perceptual IQA.

bpp or bit per pixel is the standard measure for image com-

pression. If we retain all the details in the image (lossless

compression) then bpp is a strong indicator on the quantity

of image information (takes into account also pixel con-

texts) and thus relevant to the SR task. We use the bpp

achieved by the PNG lossless compression.

Image entropy is a standard a measure of the image infor-

mation. It does not take into consideration the spacial corre-

lations from the 2D image but treats each pixel as a separate

observation. To correct this a couple of image information-

spacial entropy measures were proposed [24, 35]. However,

entropy is usually a good predictor for the image informa-

tion and the lossless compression rates achievable by cur-

rent methods. Another good image entropy can be com-

puted based on the differences between adjacent pixels.8

bic2 is our proposed simple predictor based on the PSNR

achieved by the bicubic interpolation (Matlab imresize

function) of the bicubic downscaling of the LR image by

the intended SR magnification factor. If the bicubic inter-

polation performs well on the further downscaled LR image

then we expect the same to happen for the LR image. Note

that this should happen also for other SR methods, as the

downscaled LR image is highly correlated in content with

the LR image. Liang et al. [27] apply the same procedure

for very deep CNN models to predict their performance on

LR images.

Best performance predictors In Fig. 6 we report the PSNR

and PSNR gain over bicubic (computed on RGB color

space) for the top SNU CVLab1 and HelloSR methods for

the 100 DIV2K test images sorted according to the above

listed predictors, as well as the linear regression of the

PSNR scores and the Pearson correlation (ρ) between the

achieved PSNR scores and the performance predictors. For

reference we add bicubic interpolation and bic2 scores. En-

tropy is the poorest predictor (ρ = −0.22), somehow ex-

pected since it discards the relations between the (neigh-

boring) pixels. CORNIA scores correlate well (ρ = 0.5),

bic2 correlates better (ρ = 0.59), while bpp (PNG) has

8http://www.astro.cornell.edu/research/

projects/compression/entropy.html

the strongest correlation (ρ = −0.70) with the achieved

PSNR performance by the SR methods. Noteworthy is that

bic2 is the best predictor for the performance of the bicu-

bic interpolation. A more thorough study on predictors for

the performance of SR methods is necessary, we conjecture

that such predictors could be used for fusion [52, 45] or SR

method selection to super-resolve LR images [27].

Another observation is due: if the best predictor (bpp)

without knowledge of the ground truth HR image gets

ρ = 0.70 with the SR methods, the Pearson correlation

of the PSNR achieved results by bicubic interpolation and

SNU CVLab1 reaches ρ = 0.962, while the SNU CVLab1

and HelloSR are heavily correlated in performance with

ρ = 0.999. Therefore, the known quantitative results of a

SR method are reliable predictors on the performance gains

of other SR methods.

7.7. Image resolution vs. performance

How critical for a SR evaluation dataset is the image

resolution in terms of ppi? To answer this we conduct a

couple of experiments by reducing the HR images of the

DIV2K test and then evaluating the best NTIRE 2017 chal-

lenge methods. In Fig. 7 we depict the two ways we use

to reduce the ppi of the images: (i) by bicubic downscal-

ing with a factor and thus preserving mainly much of the

low frequencies and (ii) by centered cropping of a subim-

age corresponding to a downscaling factor. In Table 1 we

show the main characteristics of the DIV2K test datasets

derived for the 2, 4, 8, and 16 downscaling factors. In Fig. 8

we report the IQA scores of the selected methods for ×4
magnification versus the factors used to reduce the images

of the DIV2K test dataset. Surprisingly, there is little to no

effect of the test image resolution (ppi) on the relative per-

formance achieved by the methods, the ranking is preserved

and this regardless the IQA measures used. We note also the

clear drop in performance when using bicubic downscal-

ing and the relatively smaller drop when using the centered

cropping strategy (or uniform sampling). As our experi-

ments shows, given sufficiently large number of diverse im-

ages in the dataset, the image resolution is, in comparison,

less important for benchmarking SR methods. We could

easily use DIV2K ⇓ 8 and still achieve meaningful bench-

marking results.

8. Conclusions

In this paper we introduced DIV2K, a new dataset for

super-resolution benchmarking, studied the winning solu-

tions from the NTIRE 2017 SR challenge in comparison

with representative methods from the recent literature, and

investigated topics of interest such as predictors for super-

resolution performance, image resolution and quality, im-

age quality assessment measures, magnification factors for

benchmarking and challenges.
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