
 

 

 

Abstract 

 

Rectified linear units (ReLU) are known to be effective in 

many deep learning methods. Inspired by linear-mapping 

technique used in other super-resolution (SR) methods, we 

reinterpret ReLU into point-wise multiplication of an 

identity mapping and a switch, and finally present a novel 

nonlinear unit, called a selection unit (SU). While 

conventional ReLU has no direct control through which 

data is passed, the proposed SU optimizes this on-off 

switching control, and is therefore capable of better 

handling nonlinearity functionality than ReLU in a more 

flexible way. Our proposed deep network with SUs, called 

SelNet, was top-5th ranked in NTIRE2017 Challenge, which 

has a much lower computation complexity compared to the 

top-4 entries. Further experiment results show that our 

proposed SelNet outperforms our baseline only with ReLU 

(without SUs), and other state-of-the-art deep-learning-

based SR methods. 

 

1. Introduction 

With the advent of 4K displays, super-resolution (SR) 

technique has become more crucial, due to the lack of 

available 4K contents. Specifically, single image SR is able 

to reconstruct high-quality high-resolution (HR) images 

from their low-resolution (LR) counterparts. 

SR methods vary from simple methods such as bicubic 

interpolation [1], to sophisticated methods including 

example-based SR methods [1]-[29] that utilize external 

and/or internal image patches for learning LR-to-HR 

mappings. 

Among them, linear-mapping-based SR methods [1]-[11] 

(LMSR) have been proposed to obtain HR images of 

comparable quality but with much lower computational 

complexity. These SR methods mostly comprise of two 

parts: 1) classifying each LR patch into one of multiple 

classes; 2) Applying an LR-to-HR linear mapping of the 

corresponding class to the current LR patch to obtain its HR 

patch. 

Recently, SR methods using deep learning [26]-[29] 

have shown state-of-the-art performance. Their networks 

consist of multiple convolutional layers, with rectified 

linear units (ReLU) between convolutional layers. Here, 

ReLU is often used to ensure nonlinearity between two 

adjacent convolutional layers. By using ReLU, networks 

can learn piece-wise linear mappings between LR and HR 

images, which results in faster training convergence and 

higher reconstruction quality [30], compared to networks 

using other nonlinear functions such as a sigmoid. 

Interestingly, we found that ReLU used in deep learning 

works very similar to linear mapping technique used in 

LMSR. ReLU can be re-defined as a point-wise 

multiplication of an identity mapping and a switch. Here, a 

switch refers to a function where the output of negative 

inputs is 0 and the output of positive inputs is 1. This switch 

function acts somewhat similar to how the classification is 

done in LMSR. However, while LMSR can control how LR 

patches are classified, ReLU does not perform such 

operation. This is because the derivative of the switch 

function is 0, and thus training error cannot be back-

propagated through the switches when training the 

networks. This means ReLU has a very limited control over 

which data is to be passed or not. 

Inspired by this limitation of ReLU operation, we 

propose a novel nonlinear unit, called selection unit (SU), 
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Figure 1: ReLU can be re-defined as a point-wise multiplication

of an identity mapping and a switch. This motivates us to create a

novel nonlinear unit: selection unit (SU). 
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which works as a trainable switch. The proposed SU is a 

multiplication of two modules: an identity mapping and a 

selection module (SM). Here, SM is a cascade connection 

of a ReLU, a 1×1 convolution and a sigmoid in a row. 

Contrary to the switch in ReLU, SM is able to optimize the 

whole selection control such that training error can be back-

propagated through itself. By incorporating SU into a deep 

CNN, we propose a 22-layered deep CNN structure 

(SelNet), which can reconstruct HR images of higher 

quality with a slightly increased complexity, compared to 

the baseline only with ReLU. Our proposed SelNet was 

ranked in the 5th place in NTIRE2017 Challenge, with 

much lower testing time compared to the top-4 entries. 

Additionally, experiment results show that our proposed 

SelNet outperforms state-of-the-art deep learning SR 

methods. 

 

2. Related work 

2.1. Super-resolution 

Reconstructing HR images from their corresponding LR 

input images is well-known as an ill-posed inverse problem 

[12], [13]. Nevertheless, various SR methods have been 

proposed to reconstruct HR images of high quality from LR 

images. 

Sparse-representation-based SR methods [13], [15], [17] 

exploit sparsity and find a sparse combination of pre-trained 

and complex LR-HR dictionary sets. R. Fattal [14] utilized 

edge statistics of LR images to reconstruct their sharper HR 

counterparts. Other SR methods [18], [23], [25] search self-

examples within LR images to extract LR-HR relationship. 

Linear-mapping-based SR methods [1]-[11] (LMSR) 

have been also proposed to obtain HR images of 

comparable quality but with much lower computational 

complexity. Adjusted anchored neighborhood regression 

(A+, APLUS) [3] and (ANR) [2] methods search for the 

best linear mapping for each LR patch, based on the 

correlation with pre-trained dictionary sets from [13]. 

Jointly optimized regressors (JOR) [4] method employs an 

expectation-maximization algorithm with tree to learn and 

apply the best linear mappings to LR patches. Our previous 

work SI [6] employs simple edge classification to find 

suitable linear mappings, which are applied directly to 

small LR patches to reconstruct their HR version. These 

LMSR methods [1]-[11] mostly comprise of two parts: 1) 

classifying each LR patch into one of classes; 2) Applying 

an LR-to-HR linear mapping of the corresponding class to 

the current LR patch to obtain its HR patch. 

2.2. Convolutional neural network for super-resolution 

Recently, SR methods using convolutional neural 

network (CNN) [26]-[29] have shown high PSNR 

performance. Dong et al. [26], [27] first utilized a 3-layered 

CNN for SR (SRCNN), and reported a remarkable jump 

compared to previous SR methods. Recently, Kim et al. [28] 

proposed a very deep 22-layered CNN (VDSR), and by 

incorporating gradient clipping and residual learning, 

VDSR reconstructed HR images of even higher PSNR 

compared to SRCNN. 

In these deep learning-based SR methods [26]-[29], 

rectified linear units (ReLU) are used to obtain nonlinearity 

between two adjacent convolutional layers. ReLU is a 

simple function, which has an identity mapping for positive 

values and 0 for negative. Unlike a sigmoid or Tanh, ReLU 

does not suffer from vanishing gradient problem, where 

back-propagated errors become vanished as they go 

backwards through layers for training. By using ReLU, 

networks can learn piece-wise linear mappings between LR 

and HR images, which results in higher reconstruction 

quality and faster training convergence. 
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Figure 2: Network architecture of our proposed SelNet using selection units (SU). 
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3. Our proposed method 

3.1. Reinterpreting ReLU 

We found that ReLU used in deep learning can be 

interpreted in terms of two modules of linear mapping 

technique used in LMSR. While linear mapping technique 

comprises of classification and linear mapping, ReLU can 

be re-defined as a point-wise multiplication of a switch and 

an identity mapping. Here, a switch refers to a function 

where the output of negative inputs is 0 and the output of 

positive inputs is 1. Combined with a convolutional layer, 

ReLU selects which values in the feature maps from the 

previous convolutional layer can be input to the next layer. 

This is somewhat similar to how the classification is done 

for selecting which linear mapping is applied in LMSR. 

However, while LMSR can control how LR patches are 

classified, ReLU cannot do so. This is because the 

derivative of the switch function is 0, and thus training error 

cannot be back-propagated through the switch when 

training networks. This means ReLU has a very limited 

control over which data is to be passed. 

At first, this limitation of ReLU can be easily solved by 

changing the switch into other functions that have nonzero 

derivative such as a sigmoid. However, even though the 

back-propagated error may now be passed through the 

sigmoid part, this variant still cannot control the switch 

directly. This is because the error that is back-propagated 

through the sigmoid of ReLU and the other error that is 

back-propagated through the identity mapping of ReLU 

will both update the same convolutional filters in the 

previous layer. Thus, the filters in the previous layer would 

be greatly affected by the error back-propagated through the 

identity mapping. This motivates us to design a novel 

ReLU-like nonlinear unit, where two different filters are set 

before the sigmoid and the identity mapping of ReLU 

respectively. Fig. 1 illustrates this idea. 

3.2. Proposed selection unit 

We propose a novel nonlinear unit, called selection unit 

(SU), which now has control over which values in the 

feature maps from the previous convolutional layer can be 

input to the next layer. In order to use a second 

convolutional filter before the switch part of ReLU, we 

propose and utilize a selection module (SM): a cascade 

connection of one ReLU, a 1×1 convolution and a sigmoid 

in a row. Thus, the proposed SU is a multiplication of two 

modules: an identity mapping and an SM. Contrary to the 

switch in ReLU, SM is able to optimize whole selection 

control as training error can be back-propagated through 

itself, which will update the 1×1 convolutional filter to 

optimize which data is to be passed to the next layer. 

3.3. Proposed network architecture 

By incorporating SU, we propose a 22-layered deep 

network for SR (SelNet). Fig. 2 shows the network 

architecture of our proposed SelNet. Our proposed SU is 

inserted between every two adjacent convolutional layers. 

For better convergence in somewhat deep network 

architecture, we also utilize improved residual units using 

identity mappings [35], where the (n-2)-th feature map after 

convolution is simply added to the n-th feature map and 

forwarded to the (n+1)-th layer. Additionally, a technique 

for learning the residual between HR and a bicubic-

interpolated image as in VDSR [28] is further incorporated 

to ensure faster convergence and better PSNR performance. 

An LR image is given to our network as input, and a sub-

pixel layer [29] is added to the end of the network to convert 

a multi-channeled LR-sized image into an HR-sized output. 

In doing so, our network becomes quadratically faster than 

other conventional networks where bicubic-interpolated 

images are used as input.  

In addition, instead of using gradient-hard clipping as in 

VDSR [28], we newly propose gradient switching for faster 

convergence in training. Gradient switching is a harsher 

version of gradient clipping, where positive gradients are 

mapped to a predefined threshold θ regardless of its 

magnitude, and negative ones to -θ. Experiments show that 

our gradient switching ensures continuous and faster 

learning even for very small back-propagated error, 

compared to other network counterparts with or without 

gradient-hard clipping. 

Fig. 3 shows the performance curve of a toy network with 

SU and its ReLU counterpart. The basic architecture for the 

both networks are the same, and the two networks have 6 

convolutional layers. Note this network is a toy example 

using SU, and is not our final network structure. As shown, 

our network with SU outperforms its ReLU counterpart. 

 

Figure 3: A PSNR performance curve for our toy network with

SU and a baseline network with ReLU. The basic architecture for

the both networks are the same. 
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4. Experiment result 

4.1. Experiment setting 

For training images, we used 800 high-quality images 

from the NTIRE2017 Challenge training dataset [37] for 

HR images. These training images are divided into 

120×120-sized RGB subimages without overlapping for 

any scaling factors. LR training subimages are obtained by 

down-scaling HR subimages using bicubic interpolation. 

We do not use any data augmentation such as rotation. As 

a result, 162,946 LR-HR subimage pairs are used for 

training. Batch size is set to 32, learning rate is set to 10-1, 

weight decay is set to 10-5, and the number of epoch is set 

to 50. The network is learned using our gradient switching 

for faster and better convergence, and θ is set to 10-4. 

We tested our SelNet on popular benchmark datasets 

including Set5, Set14 and BSD100 [33]. A down-scaled 3-

channeled RGB LR image is used as input to our network. 

A 3-channeled residual image obtained from the network is 

added to a bicubic-interpolated image to finally construct 

an HR RGB image. 

For comparison with other conventional SR methods, we 

follow the popular framework which is frequently used in 

most of SR methods [3], [27], [28] as follows. SR is applied 

to the Y-channel of LR inputs, while color components are 

simply enlarged using bicubic interpolation. PSNR and 

SSIM [32] is measured on Y-channels of HR images. Note 

our SelNet produces RGB HR images, and in order to 

measure PSNR on Y-channel, they are converted to YCbCr. 

Our proposed SelNet was implemented using 

Matconvnet beta23 [36], which is a deep learning toolbox 

for Matlab, using GPU Nvidia Titan X Pascal. Training 

time for a scale factor of 2 is 30 hours, 16 hours for a scale 

factor of 3, and 10 hours for 4. Similar trend is observed for 

testing time. This is because the size of LR input of a larger 

scaling factor will always be quadratically smaller for the 

fixed HR image size. Likely, the size of feature maps in the 

network is smaller for a larger scaling factor, thus reducing 

 
Scale Metric Bicubic APLUS [3] SRCNN [27] VDSR [28] SelNet 

2 

PSNR 33.68 36.55 36.66 37.53 37.89 

SSIM 0.9304 0.9544 0.9547 0.9587 0.9598 

Time 0.01 1.0 4.9 0.13 0.03 

3 

PSNR 30.40 32.59 32.75 33.66 34.27 

SSIM 0.8687 0.9088 0.9095 0.9213 0.9257 

Time 0.01 0.7 4.9 0.13 0.03 

4 

PSNR 28.43 30.30 30.49 31.35 32.00 

SSIM 0.8109 0.8603 0.8634 0.8838 0.8931 

Time 0.01 0.5 5.1 0.12 0.02 

Table 1: Average performance comparison for various SR methods using the Set5 test set. Time is recorded in seconds. The highest scores 

are in red bold. 

 

Scale Metric Bicubic APLUS [3] SRCNN [27] VDSR [28] SelNet 

2 

PSNR 30.24 32.27 32.45 33.03 33.61 

SSIM 0.8691 0.9056 0.9072 0.9124 0.9160 

Time 0.01 2.3 9.6 0.25 0.04 

3 

PSNR 27.55 29.12 29.30 29.77 30.30 

SSIM 0.7741 0.8188 0.8219 0.8314 0.8399 

Time 0.01 1.3 9.6 0.26 0.03 

4 

PSNR 26.01 27.31 27.50 28.01 28.49 

SSIM 0.7023 0.7491 0.7517 0.7674 0.7783 

Time 0.01 1.0 9.6 0.25 0.03 

Table 2: Average performance comparison for various SR methods using the Set14 test set. 

 

Scale Metric Bicubic APLUS [3] SRCNN [27] VDSR [28] SelNet 

2 

PSNR 29.57 31.21 31.36 31.90 32.08 

SSIM 0.8436 0.8863 0.8884 0.8960 0.8984 

Time 0.01 1.6 6.3 0.16 0.03 

3 

PSNR 27.21 28.30 28.41 28.82 28.97 

SSIM 0.7389 0.7835 0.7867 0.7976 0.8025 

Time 0.01 0.9 6.4 0.21 0.02 

4 

PSNR 25.96 26.82 26.90 27.29 27.44 

SSIM 0.6678 0.7088 0.7107 0.7251 0.7325 

Time 0.01 0.7 6.3 0.21 0.02 

Table 3: Average performance comparison for various SR methods using the B100 test set. 
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overall computations. Note that while the time of other SR 

methods were measured on CPU, VDSR [28] reported of 

using GPU Nvidia Titan Z. 

We compared our proposed SelNet with the following 

SR methods: bicubic interpolation, A+ [3], SRCNN [27], 

VDSR [28]. For A+ and SRCNN, we utilized open Matlab 

source codes that are publically available. 

4.2. Results and discussion 

Tables 1-3 show the average PSNR and SSIM values of 

reconstructed HR images using various SR methods, with 

their computation times in seconds, for Set5, Set14 and 

B100 test sets. As shown in the tables, our proposed SelNet 

outperforms all other SR methods for all scale factors an d 

for all test datasets, even with much lower computational 

time. 

Fig. 4 shows the reconstructed HR images of woman 

using various SR methods for a scale factor of 4. As shown, 

our SelNet is able to separate hat strings, where other SR 

methods have difficulty. Fig. 5 shows the reconstructed HR 

images of ppt3 using various SR methods for a scale factor 

of 4. Similarly, our SelNet reconstructs a sharper and 

clearer HR image, where a pencil and a microphone string 

can clearly be discerned. 

5. Conclusion 

By re-interpreting ReLU as a combination of an identity 

mapping and a switch, we proposed a novel selection unit 

(SU), which is a multiplication of an identity mapping and 

a sigmoid-based selection module. In doing so, our SU is 

capable of handling more nonlinearity compared to 

conventional ReLU. Furthermore, our SU-based deep SR 

network (SelNet) outperforms its ReLU counterparts and 

state-of-the-art deep learning SR methods. 
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Figure 4: Reconstructed HR images of woman using various SR methods for a scale factor of 4. 
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