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Abstract

Stationarity of reconstruction problems is the crux to en-

abling convolutional neural networks for many image pro-

cessing tasks: the output estimate for a pixel is generally

not dependent on its location within the image but only on

its immediate neighbourhood. We expect other invariances,

too. For most pixel-processing tasks, rigid transformations

should commute with the processing: a rigid transforma-

tion of the input should result in that same transformation

of the output. In existing literature this is taken into account

indirectly by augmenting the training set: reflected and ro-

tated versions of the inputs are also fed to the network when

optimizing the network weights. In contrast, we enforce this

invariance through the network design. Because of the en-

compassing nature of the proposed architecture, it can di-

rectly enhance existing CNN-based algorithms. We show

how it can be applied to SRCNN and FSRCNN both, speed-

ing up convergence in the initial training phase, and im-

proving performance both for pretrained weights and after

finetuning1.

1. Introduction

Training a (deep) neural networks involves large, anno-

tated, datasets. Because the networks comprise so many

parameters that need to be optimized , overfitting is a

very real problem – hence the need for large datasets. As

such datasets are time-consuming and costly to create, the

datasets are often synthetically augmented in various ways.

In pixel-wise image processing stationarity of the pro-

cessing, i.e. locational invariance, plays an important role.

When performing such tasks as segmentation, denoising, or

superresolution, the outputs of the network are assumed to

only depend on a small neighbourhood of the respective lo-

cations and not on the location within the image.

1 Tensorflow training and test code is made publically available at

http://telin.ugent.be/˜sdonn/code/FSRCNN_SEF.zip.

Figure 1. There are eight rigid transformations of the input image

that respect the sampling grid. Applying any of these to the input

we expect the same transformation of the output: the reconstruc-

tion should commute with such transformations.

This is the rationale behind convolutional neural net-

works. Yet for many applications, a.o. single-image su-

perresolution, additional invariances exist. Specifically, we

propose a high-level network architecture that exploits the

invariance to rigid transformations. We use (eight) rigid

transforms that do not require resampling the pixel grid

as these require no sampling-theoretic considerations and

prove to provide plenty of additional constraint to the net-

work, see Figure 1. Because this is done inside the net-

work rather than by augmenting the training set, we not only

lower the number of parameters but also introduce an addi-

tional averaging step between several estimates.

The proposed approach is applied to superresolution in

two scenarios: a neural network that departs from the bicu-

bic upsampling of the input image (SRCNN [3]), and a

network that starts from the low-resolution input (FSR-

CNN [4]). In the first case, each input pixel corresponds

with one output pixel; in the latter case, we need to infer

multiple output pixel values per input pixel. We show for

both cases that exploiting the reflectional and rotational in-

variance inside the network results in both faster training

and better performance. In the latter case we also show how

the network does not need to infer all F 2 subpixels per pixel

location but only a small subset of these.
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Section 2 discusses existing approaches for single-image

superresolution and the role of invariances. In Section 3

we outline the approach in detail, explicitly handling the

cases of single-image superresolution by factors 2, 3 and 4.

In Section 4 we apply our proposed method to the existing

architectures for single-image superresolution and show its

impact on the training speed and final performance of the

networks. The networks are trained and validated using the

NTIRE17 dataset, originally provided for the CVPR NTIRE

2017 workshop, as well as the established Set5 and Set14

datasets.

2. Related Work

Broadly, single image superresolution techniques can be

classified in three groups: interpolation methods, learning-

based methods and reconstruction methods. Interpolation

methods are perhaps the most well known: nearest neigh-

bour, bicubic, sinc-based (e.g. Lanczos), ... They are sim-

ple to implement, but do not yield very good results due to

interpolation artifacts such as blur, staircasing and ringing.

Reconstruction methods enforce prior knowledge about

the output while requiring the reconstruction to be consis-

tent with the low-resolution input [5, 7, 12, 2]. Wavelet

methods [1, 16, 6] also belong in the last category.

Learning-based methods match parts of the low-

resolution input image with entries in a dictionary, trans-

lating them into a high-resolution patch. The dictionary is

learned in a training phase from a training dataset.

It is clear that deep learning methods also belong firmly

in this category. Several authors have explored this appli-

cation of neural networks [14, 3, 4, 9] and have achieved

significant boosts over previous state of the art. Our novel

approach shows how a well-chosen extension to an existing

network (that exploits the reflectional and rotational invari-

ances) results in faster convergence and better performance.

Wang et al. showed how the domain expertise of conven-

tional sparse-coding based methods can also result in good

performances with much smaller network sizes [15].

As far as the deep learning techniques are concerned,

there are two main approaches to take. Either we upsample

the input image before feeding it to the network [8, 14, 3,

9, 15] (through a fast but rough method, e.g., interpolation-

based methods), or we simply pass the low-resolution input

to the network and let it learn the optimal upsampling dur-

ing training [4]. We illustrate that both benefit from our

proposed approach.

Timofte et al. have recently discussed several ways to

improve example-based single image super resolution [13].

While data augmentation shines on the first spot of their list,

rigid transformation invariance is not mentioned. Instead,

they raise scale invariance: image self-similarity means that

information from multiple scales can be exploited during

reconstruction.

Perez et al., on the other hand, explicitly mention the

invariance to rigid transformations [13]. Interestingly,

their approach is conceptually inverse to ours: by ap-

plying patch preprocessing and their proposed Symmetry-

Collapsing Transform they drastically lower the manifold of

possible patches. As a result, they need smaller dictionar-

ies which speeds up training and reconstruction. Contrast-

ingly we process each patch multiple times after explicitly

applying these transforms, after which we treat the various

reconstructions as different estimates for the pixel values

and average them. In the case of the FSRCNN-based net-

work this results in a reduction of the number of outputs per

patch, also implying the possibility for smaller dictionaries

as they need to contain less information.

3. Proposed Approach

We apply the proposed approach to two different sce-

narios. First, we take a look at a superresolution network

that uses an upsampled version of the low-resolution im-

age as its input. Correspondingly, it needs only output

one pixel value per input pixel. Secondly, we also exploit

the discussed invariances in a network that takes the low-

resolution image as input. Typical networks for this sce-

nario need to output F × F pixel values per input pixel,

where F is the upsampling factor. Our proposed approach,

however, elegantly reduces the required number of output.

For upsampling with a factor F = 2, the proposed network

need only output a single pixel value per input pixel.

3.1. Superresolution and rigid transformations

When applying the network to a rotated and/or reflected

version H(I) of the original input I we expect the result-

ing estimate S(H(I)) = (S ◦ H)(I) to be that same rota-

tion and/or reflection of the original estimate H(S(I)) =
(H ◦ S)(I). In other words, we assume that the superreso-

lution operation commutes with the rigid transformation of

images. The only restriction we place on the transforma-

tion of the images is that it does not require resampling of

the pixel grid. More general transformations, whose sam-

pling locations do not coincide with the input grid, incur

larger computational penalties and may, in extreme cases,

introduce artifacts themselves. For this reason, we do only

consider those rotations that do not require a resampling of

the pixel grid.

3.2. SRCNN variants

By first bicubicaly upsampling the low-resolution input

image it is no longer necessary to perform this upsampling

within the network, which can now focus on resolving the

artifacts introduced by the bicubic upsampling. The method

we choose to evaluate our proposed approach on is SRCNN,

from Dong et al. [3].
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Figure 2. Illustration of the proposed workflow for an algorithm

that works on the target resolution (such as SRCNN). The input

is transformed, and the eight versions are fed to the network sepa-

rately. The respective outputs get the corresponding inverted trans-

formation applied, after which they are all averaged.

To exploit the various invariances discussed in this paper,

we simply feed the network with all of the reflected and

rotated image versions, apply the inverse transformations

on the outputs and then average the eight resulting images,

as shown in Figure 2, at the cost of additional computations.

3.3. FSRCNN variants

For each pixel in the input image, we need to estimate a

subpixel grid of F ×F values (where F is the upscaling fac-

tor). As such, a straightforward design of a neural network

has it estimating F
2 values for each pixel neighbourhood.

As Figure 3 illustrates, however, we only really need to

output a subset of these values - the other values are cal-

culated by feeding the network transformed versions of the

input and applying the inverse transformation to the outputs.

For upscaling by factor 2 we only train a network for the

top-left sub-pixel. Accounting for 8 possible transforma-

tions of the neighbourhood, each of the four sub-pixels is

placed in this position exactly twice (see Figure 4). Hence

we feed the network these transformed inputs, apply the in-

verse transformations to the output and then average both

estimates for each subpixel location. Upscaling factors 3
and 4 we work the same - the resulting networks both have

3 output values to be trained, as shown in Figures 3 and 4.

3.4. The proposed method and data augmentation

Data augmentation on the training set using the eight

aforementioned rigid transformations provides no addi-

tional benefit to our proposed method. The improving di-

rections for the weights as inferred from an input image I

and its transformed version H(I) are identical, which fol-

lows directly from the construction of the network.

4. Results

We evaluate the proposed approach in terms of initial

training speed as well as test performance on the Set5,

Set14 and DIV2K datasets, both quantitatively and qualita-

tively. At the time of writing, the DIV2K dataset consists of

800 high-resolution images (with an extra 100 images to be

made public after conclusion of the NTIRE17 challenge).

FSRCNN

Transformations Inverse transformations

Sum

Figure 3. Illustration of the proposed workflow for an algorithm

that work on the input resolution (such as FSRCNN) for upscaling

factor 4. Again the input is transformed into eight versions, each

of which are fed to the network. Where we would typically esti-

mate a 4 × 4 grid of subpixels, we now only estimate three out

of those. All outputs again have their transformation inverted, and

after averaging all estimates for the same positions, we see that the

entire subpixel grid is covered with only three outputs (down from

16).

Figure 4. The subpixel grids for upscaling factors 2, 3 and 4 and

the corresponding locations estimated by our proposed method

(containing the number of estimates per subpixel). See also Fig-

ure 3. We only need to estimate the locations above the diagonal

in the top left quadrant of the subpixel grid.

Of these 800 images, we use the first 100 as the train-

ing set, the next 100 as the testing set and the last 50 as the

validation set. The relatively small subset of training im-

ages proved to be large enough while still fitting inside the

memory of an average workstation.

4.1. Initial training convergence

The networks are trained by randomly extracting 100
patches corresponding with a single input pixel from the im-

ages and backpropagating these through the networks. We

use the SRCNN network from [3], and the FSRCNN base

network with d = 30, s = 10 and m = 1 from [4].

4.1.1 Training SRCNN variants

Here, we evaluate three variants. First of all, we have the

exact design from [3], trained only with the images from

the dataset. Secondly we have the same network design

trained with the images from the dataset augmented by the

discussed rigid transformations: a possible reflection and

three possible rotations. We call this method SRCNN +

data. Finally, we have our proposed variant, SRCNN + in-

variances, illustrated in Figure 2, which processes all eight

transformations of the input image and averages out the re-

verse transformations of the outputs.
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Figure 5. Test PSNR performance in function of the backpropaga-

tion iteration for the SRCNN variants (upscaling factor 2).
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Figure 6. Test PSNR in function of the backpropagation iteration

for the FSRCNN variants (upscaling factor 2).

As can be seen in Figure 5, the network variant with in-

ternal exploitation of the image invariances converges faster

in the initial training iterations. Specifically, it manages to

eke out a better performance than the network trained with

data augmentation. While data augmentation in the training

phase appears not to make a big difference in network per-

formance (indicating that the training set is representative

enough), the proposed approach does achieve better results.

4.1.2 Training FSRCNN variants

Again, we evaluate three alternative variants. The first vari-

ant is the implementation of FSRCNN from [4]. Secondly,

we have the proposed variant which only estimates a subset

of the subpixel values as shown in Figure 3. This design is

called FFSRCN - SEF (Single Entry Filter).

Finally, we also evaluate the FSRCNN network with a

correspondingly higher number of hidden nodes. For the

factor two upscaling, the FSRCNN - SEF network only

needs to estimate a single subpixel value and can leverage

all of its internal nodes for this purpose. At the same time,

FSRCNN needs to output four values and only has the same

number of internal nodes to do so. For this reason, we also

evaluate a variant of FSRCNN which has four times the in-

ternal nodes: FSRCNN large. This was not meaningful in

the previous scenario (working on the upsampled input) as

each network only needed to output one per input pixel and

the proposed approach gained no significant advantage.
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Figure 7. Test PSNR in function of the backpropagation iteration

for the FSRCNN variants (upscaling factor 3).
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Figure 8. Test PSNR in function of the backpropagation iteration

for the FSRCNN variants (upscaling factor 4).

As can be seen in Figure 6, the proposed approach re-

sults in faster convergence in terms of iterations. Similar to

Dong et al. [4], we also find that an increase of the num-

ber of internal nodes does not entail a significant increase

in performance. However, there is still a significant differ-

ence in performance between FSRCNN large and FSRCNN

- SEF, which indicates that the PSNR gain of FSRCNN -

SEF compared to FSRCNN is not just due to the relative

higher number of internal nodes per output value.

Aside from its better performance compared to SRCNN,

the FRSCNN network design is also much more suited for

larger upscaling factors. This is because, internally, it works

on the input resolution rather than the target resolution (as

SRCNN does). As a result, the radii of the convolutions in-

side the network actually cover a much larger part of the

output compared to SRCNN for the same computational

cost. Figures 7 and 8 show that the same conclusions can be

extended to the higher upscaling factors and that here, too,

the proposed method improves upon the original networks.

4.2. Test­time performance of the proposed variants

We now wish to evaluate our proposed approach with

converged networks. Gratefully using the pre-trained

weights given by Dong et al. for both SRCNN and FSR-

CNN [3, 4], we again evaluate several variants: from the

original pretrained networks to the proposed networks with

finetuned weights.
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Table 1. Test PSNRs results on Set5 and Set14. See text below for a description of the variants.
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Set5 36.84 36.76 36.33 36.06 36.48 36.65 36.53 36.29 36.35 36.36 36.94 36.69 36.78 36.79

Set14 32.46 32.48 32.15 31.66 32.04 32.22 32.22 31.74 31.82 31.83 32.54 32.04 32.10 32.10

x3
Set5 32.73 33.04 32.45 32.33 32.69 32.83 32.55 32.38 32.43 32.41 33.06 32.85 32.92 32.92

Set14 29.21 29.37 29.01 28.78 28.93 29.04 29.08 28.56 28.63 28.62 29.37 28.82 28.86 28.85

x4
Set5 30.35 30.82 30.15 30.26 30.51 30.54 30.04 30.03 30.01 30.08 30.55 30.54 30.57 30.62

Set14 27.41 27.62 27.21 26.96 27.14 27.20 27.12 26.80 26.82 26.85 27.50 27.08 27.16 27.17

Table 2. Test PSNRs results on Set5 and Set14. See text for a description of the variants.
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x4 29.61 29.78 29.80 29.64 29.61 29.65 29.88 29.85 29.91

• SRCNN: the original network with its pretrained

weights,

• SRCNN + I(nvariances): the average of the recon-

structions by the original network with its pretrained

weights for all eight discussed transformations,

• SRCNN + I + F(inetuning): finetuning the network

weights in the new approach on our DIV2K training

set for 100000 backpropagations at stepsize 10−6.

• FSRCNN-s: the original FSRCNN-s network (32,5,1)

with its pretrained weights,

• FSRCNN-s + SEF: only using some of the subpixels

per prediction location, and using this output as illus-

trated in Figure 3 to arrive at all subpixel estimates,

• FSRCNN-s + SEF + F: its finetuned version on our

DIV2K training set, again for 100000 backpropaga-

tions at stepsize 10−6.

• FSRCNN: the original FSRCNN network (56,12,4)

with its pretrained weights,

• FSRCNN + SEF: again only using some of the sub-

pixel estimates,

• FSRCNN + SEF + F: its finetuned version, again on

our training subset of DIV2K and trained for 100000

backpropagations with stepsize 10−6.

For the original SRCNN, FSRCNN-s and FSRCNN net-

works we mention both the results from their respective pa-

pers and the results obtained within our evaluation frame-

work (which splits up images into patches in order to fit ev-

erything on your average GPU). Table 1 shows the perfor-

mance on Set5 and Set14, listing some other methods for

comparison [15, 11]. The conclusion here is that the pro-

posed approach indeed improves slightly on the converged

preformance of SRCNN, FSRCNN-s and FSRCNN. For

SRCNN further finetuning leads to non-negligible improve-

ments over the pre-trained weights. This is not the case for

FSRCNN-s and FSRCNN, where finetuning only leads to

negligible changes in the test PSNR values, even though the

SEF approach led to slight improvements of the PSNR. We

can explain this by remembering that FSRCNN(-s) already

explicitly estimates subpixel locations. While our approach

for SRCNN + I turns one pixel estimate into 8 estimates and

averages those, FSRCNN + SEF turns one subpixel estimate

into two estimates and averages those. The same conclu-

sions go for DIV2K, as listed in Table 2. Visual results are

available in Figure 9 for the lena and butterfly images from

respectively Set14 and Set5. All images except the ones

for SRCNN + I + F and FSRCNN SEF + F were extracted

from [4].
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Figure 9. Details of the upsampling result of the butterfly and lena images, for an upsampling factor of 3.

5. Conclusion

We have proposed a new encompassing approach to con-

volutional neural network superresolution, which can be ap-

plied to existing network designs. By exploiting reflectional

and rotational invariance of image upsampling, we improve

initial training convergence and test-time performance.

We have illustrated this on two distinct approachs to deep

learning superresolution: one that takes a rough estimate of

the reconstruction as input, and one that starts from the low-

resolution image. We have provided qualitative and qualita-

tive evaluations for several datasets. The proposed approach

can be easily fit around other existing techniques.
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6. Future Work

We see two immediate avenues for possible improve-

ment of the proposed method. First of all, we have restricted

ourselves to rigid transformations that respect the sampling

grid. Extending the approach to take other possible rota-

tions into account might improve results further, but would

also introduce sample theory and the necessity for resam-

pling kernels. These might in their turn introduce new ar-

tifacts and issues that hamper performance. And secondly;

we simply average all subpixel estimates for the same loca-

tions. Better results might be achieved through the use of a

more general pooling operator, such as the median [10].
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