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Abstract

Recent advances have seen a surge of deep learning

approaches for image super-resolution. Invariably, a

network, e.g. a deep convolutional neural network (CNN)

or auto-encoder is trained to learn the relationship between

low and high-resolution image patches. Recognizing that a

wavelet transform provides a “coarse” as well as “detail”

separation of image content, we design a deep CNN to

predict the “missing details” of wavelet coefficients of the

low-resolution images to obtain the Super-Resolution (SR)

results, which we name Deep Wavelet Super-Resolution

(DWSR). Out network is trained in the wavelet domain

with four input and output channels respectively. The input

comprises of 4 sub-bands of the low-resolution wavelet

coefficients and outputs are residuals (missing details) of 4

sub-bands of high-resolution wavelet coefficients. Wavelet

coefficients and wavelet residuals are used as input and

outputs of our network to further enhance the sparsity

of activation maps. A key benefit of such a design is

that it greatly reduces the training burden of learning

the network that reconstructs low frequency details. The

output prediction is added to the input to form the final SR

wavelet coefficients. Then the inverse 2d discrete wavelet

transformation is applied to transform the predicted details

and generate the SR results. We show that DWSR is

computationally simpler and yet produces competitive and

often better results than state-of-the-art alternatives.

1. Introduction

In image processing, reconstructing High-Resolution

(HR) image from its corresponding Low-Resolution (LR)

image is known as Super-Resolution (SR). The methods

accomplishing this task are usually classified into two

categories: multi-frame super-resolution and single image

super-resolution (SISR). In multi-frame super-resolution,

multiple LR images that are captured from the same scene

are combined to generate the corresponding HR image [1,

2]. In SISR, it is very common to utilize examples from
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Figure 1: DWSR and other state-of-the-art methods

reported PSNR with scale factor of 3 on Set5. For

experimental setup see Section 4.4.

the historic data and form dictionaries of LR and HR

image patches [3, 4]. These dictionaries are then used to

transform each LR patch to the HR domain. For instance,

[5, 6, 7, 8, 9] explored the similarity of self-examples, while

others mapped the LR to HR patches with use of external

samples [10, 11, 12, 13, 14, 15, 16, 17].

In this paper, we address the problem of single image

super resolution, and we propose to apply super resolution

in the wavelet domain for the reasons that we will justify

later. Wavelet coefficients prediction for super-resolution

has been applied successfully to multi-frames SR. For

instance, [18, 19, 20, 21] used multi-frames images to

interpolate the missing details in the wavelet sub-bands

to enhance the resolution. Several different interpolation

methods for wavelet coefficients in SISR were studied

as well. [22] used straightforward bicubic interpolation

to enlarge the wavelet sub-bands to produce SR results

in spatial domain. [23] explored interlaced sampling

structure in the low-resolution data for wavelet coefficients

interpolation. [24] formed a minimization problem to

learn the suitable wavelet interpolation with a smooth prior.

Since the detailed wavelet sub-bands are often sparse, it is

suitable to apply sparse coding methods to estimate detailed
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wavelet coefficients and can significantly refine image

details. Methods [25, 26, 27] used different interpolations

related to sparse coding. Other attempts [28, 29] utilize

Markov chains and [30] used nearest neighbor to interpolate

wavelet coefficients. However, due to limited training

and straightforward prediction procedures, these methods

are not powerful enough to process general input images

and fail to deliver state-of-the-art SR results, especially

compared to more recent deep learning based methods for

super resolution.

Deep learning promotes the design of large scale

networks [31, 32, 33] for a variety of problems including

SR. To this end, deep neural networks were applied to

super resolution task. Among the first deep learning based

super resolution methods, Dong et al. [34] trained a

deep convolution neural network (SRCNN) to accomplish

the image super-resolution task. In this work, the

training set comprises of example LR inputs and their

corresponding HR output images which were fed as training

data to the SRCNN network. Combined with sparse

coding methods, [35] proposed a coupled network structure

utilizing middle layer representations for generating SR

results which reduced training and testing time. In different

approaches, Cui et al. [9] proposed a cascade network

to gradually upscale LR images after each layer, while

[17] trained a high complexity convolutional auto-encoder

called Deep Joint Super Resolution (DJSR) to obtain the

SR results. Self examples of images were explored in [36]

where training sets exploit self-example similarity, which

leads to enhanced results. However, similar to SRCNN,

DJSR suffers from expensive computation in training and

processing to generate the SR images.

Recently, residual net [37] has shown great ability at

reducing training time and faster convergence rate. Based

on this idea, a Very Deep Super-Resolution (VDSR) [38]

method is proposed which emphasizes on reconstructing

the residuals (differences) between LR and HR images

rather than putting too much effort on reconstructing

low frequency details of HR images. VDSR uses 20

convolutional layers producing state-of-the-art results in

super resolution and takes significantly shorter training

time for convergence; however, VDSR is massively

parameterized with these 20 layers.

Motivations: Most of the deep learning based image

super resolution methods work on spatial domain data

and aim to reconstruct pixel values as the output of

network. In this work we explore the advantages of

exploiting transform domain data in the SR task especially

for capturing more structural information in the images

to avoid artifacts. In addition to this and motivated

by promising performance of VDSR and residual nets

in super resolution task, we propose our Deep Wavelet

network for super resolution (DWSR). Residual networks

benefit from sparsity of input and output, and the fact

that learning networks with sparse activations is much

easier and more robust. This motivates us to exploit

spatial wavelet coefficients which are naturally sparse.

More importantly, using residuals (differences) of wavelet

coefficients as training data pairs further enhances the

sparsity of training data resulting in more efficient learning

of filters and activations. In other words, using wavelet

coefficients encourages activation sparsity in middle layers

as well as output layer. Consequently, residuals for wavelet

coefficients themselves become sparser and therefore easier

for the network to learn. In addition to this, wavelet

coefficients decompose the image into sub-bands which

provide structural information depending on the types of

wavelets used. For example, Haar wavelets provide vertical,

horizontal and diagonal edges in wavelet sub-bands which

can be used to infer more structural information about

the image. Essentially our network uses complementary

structural information from other sub-bands to predict the

desired high-resolution structure in each sub-band.

The main contributions of this paper are the following:

1) To the best of our knowledge, the proposed DWSR

is the first approach to combine the complementarity of

information (into low and high frequency sub-bands) in the

wavelet domain with a deep CNN. Specifically, wavelets

promote sparsity and also provide structural information

about the image. 2) In addition to a wavelet prediction

network, we built on top of residual networks which fit well

to the wavelet coefficients due to their sparsity promoting

nature and further enhancing it by inferring residuals. 3)

Our network has multiple input and output channels which

allows to learn different structures at different levels of

the image. This complementary structural information in

wavelet coefficients helps in better reconstruction of SR

results with less artifacts. Extensive experimental results

validate that our approach produces less artifacts around

edges and outperforms many state-of-the-art methods.

2. 2D Discrete Wavelet Transformation (2dDWT)

To perform a 1D Discrete Wavelet Transformation, a

signal x[n] ∈ R
N is first passed through a half band high-

pass filter GH [n] and a low-pass filter GL[n], which are

defined as (for Haar (“db1”) wavelet):

GH [n] =











1, n = 0

−1, n = 1

0, otherwise

, GL[n] =

{

1, n = 0, 1

0, otherwise

(1)

After filtering, half of the samples can be eliminated

according to the Nyquist rule, since the signal now has a

frequency bandwidth of π/2 radians instead of π.

Any digital image x can be viewed as a 2D signal with

index [n,m] where x[n,m] is the pixel value located at nth
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Figure 2: The procedure of 1-level 2dDWT decomposition.

column and mth row. The 2D signal x[n,m] can be treated

as 1D signals among the rows x[n, :] at a given nth column

and among the columns x[:,m] at a given mth row. A 1-

level 2D wavelet transform of an image can be captured

by following the procedure in Figure 2 along rows and

columns, respectively. As mentioned earlier, we are using

Haar kernels in this work.

An example of 1-level 2dDWT decomposition with Haar

kernels is shown in Figure 3. The right part of Figure 3 is

the notation of each sub-band of wavelet coefficients. It

is clear that the 2dDWT captures the image details in four

sub-bands: average (LL), vertical(HL), horizontal(LH) and

diagonal(HH) information, which are corresponding to each

wavelet sub-bands coefficients. Note that after 2dDWT

decomposition, the combination of four sub-bands always

have the same dimension as the original input image.

The 2d Inverse DWT (2dIDWT) can trace back the

2dDWT procedure by inverting the steps in Figure 2. This

allows the prediction of wavelet coefficients to generate SR

results. Detailed wavelet decomposition introduction can be

found in [39].

3. Proposed Method: Deep Wavelet Prediction

for Super-resolution (DWSR)

The SR can be viewed as the problem of restoring

the details of the image given an input LR image. This

viewpoint can be combined with wavelet decomposition.

As shown in Figure 3, if we treat the input image as an LL

output of 1-level 2dDWT, predicting the HL, LH and HH

sub-bands of the 2dDWT will give us the missing details

of the LL image. Then one can use 2dIDWT to gather the

predicted details and generate the SR results. With Haar

a b

c d

LL

LH HH

HL

AB

CD

HR

2dDWT

2dIDWT

Figure 3: The 2dDWT and 2dIDWT. A,B,C,D are four

example pixels located in a 2×2 grid at the top left corner of

HR image. a, b, c, d are four pixels from the top left corner

of four sub-bands correspondingly.

wavelet, the coefficients of 2dIDWT can be computed as:



















A = a+ b+ c+ d

B = a− b+ c− d

C = a+ b− c− d

D = a− b− c+ d

(2)

where A,B,C,D and a, b, c, d represent the pixel values

from corresponding image/sub-bands.

Therefore, with the help of wavelet transformation,

the SR problem becomes a wavelet coefficients prediction

problem. In this paper, we propose a new deep learning

based method to predict details of wavelet sub-bands from

the input LR image. To the best of our knowledge, DWSR

is the first deep learning based wavelet SR method.

3.1. Network Structure

The structure of the proposed network is illustrated in

Figure 4. The proposed network has a deep structure similar

to the residual network [37] with two input and output layers

with 4 channels. While most of deep learning based SR

methods have only one channel for input and output, our

network takes four input channels into consideration and

produces four corresponding channels at the output. There

are 64 filters of size 4× 3× 3 in the first layer and 4 filters

of size 64 × 3 × 3 in the last layer. In the middle part of

the network, the network has N same-sized hidden layers

with 64× 3× 3× 64 filters each. The output of each layer,

except the output layer, is fed into ReLU activation function

to generate a nonlinear activation map.

Usually, the CNN based SR methods only take valid

regions into consideration while feeding forward the inputs.

For example, in SRCNN [34], the network has three layers

with filter size of 9 × 9, 1 × 1 then 5 × 5, from which

we can compute the cropped out information width, which

is (9 + 1 + 5 − 3) = 12 pixels. During the training

process, SRCNN takes in sub-images of size 33 × 33, but

only produce outputs of size 21 × 21. This procedure is
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Figure 4: Wavelet prediction for SR network structure: there are input layers which takes four channels and output layers

produce four channels. The network body has repeated N same-sized layers with ReLU activation functions. One example

of the input LRSB and network output ∆SB are plotted. The histogram of all coefficients in ∆SB is drawn to illustrate the

sparsity of the outputs.

unfavorable in our deep model since the final output could

be too small to contain any useful information.

To solve this problem, we use zero padding at each layer

to keep the outputs having the same sizes as the inputs. In

this manner, we can produce the same size final outputs as

the inputs. Later the experiments shows that with the special

wavelet sparsity, the padding will not affect the quality of

the SR results.

3.2. Training Procedure

To train the network, the low-resolution training images

are enlarged by bicubic interpolation with the original

downscale factor. Then the enlarged LR images are passed

through the 2dDWT with Haar wavelet to produce four LR

wavelet Sub-Bands (LRSB) which is denoted as:

LRSB = {LA, LV, LH, LD} := 2dDWT{LR} (3)

where the LA, LV, LH and LD are sub-bands containing

wavelet coefficients for average, vertical, horizontal

and diagonal details of the LR image, respectively.

2dDWT{LR} denotes the 2dDWT of the LR image.

The transformation is also applied on the corresponding

HR training images to produce four HR wavelet Sub-Bands

(HRSB):

HRSB = {HA,HV,HH,HD} := 2dDWT{HR} (4)

where the HA, HV, HH and HD denote the sub-bands con-

taining wavelet coefficients for average, vertical, horizontal

and diagonal details of the HR image, respectively.

Then the difference ∆SB (residual) between correspond-

ing LRSB and HRSB is computed as:

∆SB = HRSB − LRSB

= {HA − LA,HV − LV,HH − LH,HD − LD}

= {∆A,∆V,∆H,∆D}

(5)

∆SB is the target that we desire the network to produce with

input LRSB. The feeding forward procedure is denoted as

f(LRSB).
The cost of the network outputs is defined as:

cost =
1

2
‖∆SB − f(LRSB)‖22 (6)

The weights and biases can be denoted as (Θ, b). Then

the optimization problem is defined as:

(Θ, b) = argmin
Θ,b

1

2
‖∆SB − f(LRSB)‖22 + λ‖Θ‖22 (7)

where the ‖Θ‖22 is the standard weight decay regularization

with parameter λ.

Essentially, we want our network to learn the differences

between wavelet sub-bands of LR and HR images. By

adding these differences (residual) to the input wavelet sub-

bands, we will get the final super resolution wavelet sub-

bands.
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3.3. Generating SR Results

To produce SR results, the bicubic enlarged LR input

images are transformed by 2dDWT to produce LRSB as

Equation (3). Then LRSB is fed forward through the trained

network to produce ∆SB. Adding LRSB and ∆SB together

generates four SR wavelet Sub-Bands (SRSB) denoted as:

SRSB = {SA, SV, SH, SD}

= LRSB +∆SB

= {LA +∆A,LV +∆V,LH +∆H,LD +∆D}

(8)

Finally, 2dIDWT generates the SR image results:

SR = 2dIDWT{SRSB} (9)

3.4. Understanding Wavelet Prediction

Training in wavelet domain can boost up the training and

testing procedure. Using wavelet coefficients encourages

activation sparsity in hidden layers as well as output

layer. Moreover, by using residuals, wavelet coefficients

themselves become sparser and therefore easier for the

network to learn sparse maps rather than dense ones. The

histogram in Figure 4 illustrates the sparse distribution of

all the ∆SB coefficients. This high level of sparsity further

reduces the training time required for the network resulting

in more accurate super resolution results.

In addition, training a deep network is actually to

minimize a cost function which is usually defined by

l2 norm. This particular norm is used because it

homogeneously describes the quality of the output image

comparing to the ground truth. The image quality is then

quantified by the assessment metric PSNR. However, SSIM

[40] has been proven to be a conceptually better way to

describe the quality of an image (comparing to the target)

which unfortunately can not be easily optimized. Nearly all

the SR methods use SSIM as final testing metric but it is not

emphasized in the training procedure.

However, DWSR encourages the network to produce

more structural details. As shown in Figure 4, the SRSB

has more defined structural details than LRSB after adding

the predicted ∆SB. With Haar wavelet, every fine detail has

different intensity of coefficients spreading in all four sub-

bands. Overlaying four sub-bands together can enhance

the structural details the network taking in by providing

additional relationships between structural details. At

a given spatial location, the first sub-band gives the

general information of the image, following three detailed

sub-bands provide horizontal/vertical/diagonal structural

information to the network at this location. The structural

correlation information between the sub-bands helps the

network weights forming in a way to emphases the fine

details.

By taking more structural similarity into account while

training, the proposed network increases both the PSNR

and SSIM assessments to deliver a visually improved

SR result. Moreover, benefiting from wavelet domain

information, DWSR produces SR results with less artifacts

while other methods suffers from misleading artificial

blocks introduced by bicubic (see Section 4.5).

4. Experimental Evaluation

4.1. Data Preparation

During the training phase, the NTIRE [41] 800 training

images are used without augmentation. The NTIRE HR

images {Yi}
800
i=1

are down-sampled by the factor of c.
Then the down-sampled images are enlarged busing bicubic

interpolation by the same factor c to form the LR training

images {Xi}
800
i=1

. Note that the image Yi is cropped so that

its width and height be multiple of c. Therefore Xi and

Yi have the same size where Yi represents the HR training

image, Xi represents the corresponding LR training image.

Xi and Yi are then cropped to 41 × 41 pixels sub-images

with 10 pixels overlapping for training.

For each sub-image from Xi, the LRSB is computed as

Equation (3). For each corresponding sub-image from Yi,

the HRSB is computed as Equation (4). Then the residual

∆SB is computed as Equation (5).

During the testing phase, several standard testing data

sets are used. Specifically, Set5 [13], Set14 [42], BSD100

[43], Urban100 [36] are used to evaluate our proposed

method DWSR.

Both training and testing phases of DWSR only utilize

the luminance channel information. For color images,

Cr and Cb channels are directly enlarged by bicubic

interpolation from LR images. These enlarged chrominance

channels are combined with SR luminance channel to

produce color SR results.

4.2. Training Settings

During the training process, several training techniques

are used. The gradients are clipped to 0.01 by norm clipping

option in the training package. We use Adam optimizer as

described in [44] to updates Θ and b. The initial learning

rate is 0.01 and decreases by 25% every 20 epochs. The

weight regulator is set to 1 × 10−3 to prevent over-fitting.

Other than input and output layers, the DWSR has N = 10
same-sized convolutional hidden layers with filter size of

64 × 3 × 3 × 64. This configuration results in a network

with only half of parameters in VDSR [38].

The training scheme is implemented with TensorFlow

[45] package with Python 2.7 interaction interface. We use

one GTX TITAN X GPU 12 GB for both the training and

testing.
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Original Bicubic

(19.0292, 0.6432)

ScSR

(19.0588, 0.65216)

A+

(20.1155, 0.72667)

SelfEx

(20.6903, 0.7603)

SRCNN

(20.0734, 0.7192)

FSRCNN

(20.0687, 0.7172)

SCN

(20.0824, 0.7220)

VDSR

(20.8673, 0.7690)

DWSR

(21.1639, 0.7776)

Figure 5: Test image No.19 in Urban100 data set. From top left to bottom right are results of: ground truth, bicubic, ScSR,

A+, SelfEx, SRCNN, FSRCNN, SCN, VDSR, DWSR. The numeral assessments are labeled as (PSNR, SSIM). DWSR

(bottom right) produces more defined structures with better SSIM and PSNR than state-of-the-art methods.

4.3. Convergence Speed

Since the gradients are clipped to a numerical large

norm, with the high initial learning rate, DWSR reaches

convergence with a really fast speed and produces practical

results (see following reported evaluations). Figure 6 shows

the convergence process during the training by plotting the

evaluation of cost over training epochs. After 100 epochs,

the network is fully converged and (Θ,b) is used for testing.

The training procedure for 100 epochs takes about 4 hours

to finish with one GPU.

4.4. Comparison with State­of­the­Art

We compare DWSR with several state-of-the-art

methods and use Bicubic as the baseline reference1.

ScSR [4] and A+ [15] are selected to represent the sparse

coding based and dictionary learning based methods. For

deep learning based methods, DWSR is compared with

SCN [46], SelfEx [36], FSRCNN [47], SRCNN [34] and

VDSR [38]. We use publicly published testing codes from

different authors, the tests are carried on GPU as mentioned

1Please refer to http://signal.ee.psu.edu/DWSR.html for

high quality color images and to download our code.
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Figure 6: The evaluations of cost function (6) over training

epochs for training scale factor 4. At 100 epoch, the

network training convergences.

above for deep learning based methods. For FSRCNN,

SRCNN and sparse based methods we use their public CPU

testing codes.

Table 1 shows the summarized results of PSNR and

SSIM evaluations. The best results are shown in red

and second best are shown in blue. DWSR has a clear
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Original Bicubic

(16.5566, 0.4357)

ScSR

(16.5806, 0.43733)

A+

(17.3281, 0.52305)

SelfEx

(17.8706, 0.5642)

SRCNN

(17.3284, 0.5176)

FSRCNN

(17.1200, 0.5003)

SCN

(17.4754, 0.5424)

VDSR

(18.1470, 0.6016)

DWSR

(18.3464, 0.6141)

Figure 7: Test image No.92 in Urban100 data set. From top left to bottom right are results of: ground truth, bicubic, ScSR,

A+, SelfEx, SRCNN, FSRCNN, SCN, VDSR, DWSR. The numeral assessments are labeled as (PSNR, SSIM). DWSR

(bottom right) produces more fine structures with better SSIM and PSNR than state-of-the-art methods. Also note DWSR

does not produce artifacts diagonal edges in the red circled region.

advantage on the large scaling factors owing to its reliance

on incorporating the structural information and correlation

from wavelet transform sub-bands. For large scale factors,

DWSR delivers better results than the best known method

(VDSR) with only half parameters benefiting from training

in wavelet feature domain.

Table 2 shows the execution time of different methods.

Since DWSR only has half of the parameters than the most

parameterized method (VDSR) and benefiting from really

sparse network activations, DWSR takes much less time to

apply super-resolution. For 2K images in NTIRE testing

set, DWSR takes less than 0.1s to produce the outputs of

the network including the loading time from GPU.

Figure 5 shows SR results of a testing image from

Urban100 dataset with scale factor 4. Overall, deep learning

based methods produce better results than sparse coding

based and dictionary learning based methods. Compared

to SRCNN, DWSR produces more defined structures

benefiting from training in wavelet domain. Compared to

VDSR, DWSR results give higher PSNR and SSIM values

using less than half parameters of VDSR with a faster speed.

Visually, the edges are more enhanced in DWSR than other

state-of-the-art methods and is clearly illustrated in the

enlarged areas. The image generated by DWSR has less

artifacts that are caused by initial bicubic interpolation of

LR image and results in sharper edges which are consistent

with the ground truth image. Also quite clearly, DWSR has

an advantage on reconstructing edges especially diagonal

ones due to the fact that these structural information are

prominently emphasized with sub-bands in Haar wavelets

coefficients.

4.5. Large Scaling Factor SR Artifacts

Figure 7 illustrates SR results from different methods

with scale factor 4. DWSR produces more enhanced

details than state-of-the-art methods. Moreover, since the

scale factor is large for bicubic interpolations to keep the

structural information, some artificial blocks are introduced

during the bicubic enlargement. Meanwhile nearly all

the deep learning based methods are utilizing the bicubic

interpolations as the starting point, these artificial blocks get

more pronounced during the SR enhancements. Eventually,
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Table 1: PSNR and SSIM result comparisons with other approaches for 4 different datasets.

PSNR SSIM
Bicubic

[Baseline]

ScSR

[TIP 10]

A+

[ACCV 14]

SelfEx

[CVPR 15]

FSRCNN

[ECCV 16]

SRCNN

[PAMI 16]

VDSR

[CVPR 16]

DWSR

[ours]

Set5

x2

x3

x4

33.64 0.9292

30.39 0.8678

28.42 0.8101

35.78 0.9485

31.34 0.8869

29.07 0.8263

36.55 0.9544

32.58 0.9088

30.27 0.8605

36.47 0.9538

32.57 0.9092

30.32 0.8640

36.94 0.9558

33.06 0.9140

30.55 0.8657

36.66 0.9542

32.75 0.9090

30.48 0.8628

37.52 0.9586

33.66 0.9212

31.35 0.8820

37.43 0.9568

33.82 0.9215

31.39 0.8833

Set14

x2

x3

x4

30.22 0.8683

27.53 0.7737

25.99 0.7023

31.64 0.8940

28.19 0.7977

26.40 0.7218

32.29 0.9055

29.13 0.8188

27.33 0.7489

32.24 0.9032

29.16 0.8196

27.40 0.7518

32.54 0.9088

29.37 0.8242

27.50 0.7535

32.42 0.9063

29.28 0.8209

27.40 0.7503

33.02 0.9102

29.77 0.8308

28.01 0.7664

33.07 0.9106

29.83 0.8308

28.04 0.7669

B100
x2

x4

29.55 0.8425

25.96 0.6672

30.77 0.8744

26.61 0.6983

31.21 0.8864

26.82 0.7087

31.18 0.8855

26.84 0.7106

31.66 0.8920

26.92 0.7201

31.36 0.8879

26.84 0.7101

31.85 0.8960

27.23 0.7238

31.80 0.8940

27.25 0.7240

Urban100
x2

x4

26.66 0.8408

23.14 0.6573

28.26 0.8828

24.02 0.7024

29.20 0.8938

24.32 0.7186

29.54 0.8967

24.78 0.7374

29.87 0.9010

24.61 0.7270

29.50 0.8946

24.52 0.7221

30.76 0.9140

25.18 0.7524

30.46 0.9162

25.26 0.7548

Table 2: Results of the execution time comparison to other approaches

ScSR

[TIP 10]

A+

[ACCV 14]

SelfEx

[CVPR 15]

FSRCNN

[ECCV 16]

SRCNN

[PAMI 16]

VDSR

[CVPR 16]

DWSR

[ours]

Set5

x2

x3

x4

80.22

82.67

84.88

0.58

0.32

0.24

45.76

32.28

29.32

0.30

0.23

0.26

2.56

2.63

2.16

0.13

0.13

0.12

0.06

0.05

0.06

Set14

x2

x3

x4

86.12

91.52

89.25

0.85

0.59

0.32

112.3

76.02

66.06

0.32

0.42

0.39

4.52

4.25

4.68

0.25

0.26

0.25

0.07

0.08

0.07

B100
x2

x4

98.03

100.43

0.60

0.26

62.02

36.67

0.32

0.39

2.65

2.98

0.16

0.26

0.09

0.12

Urban100
x2

x4

1021.06

1282.33

2.96

1.21

663.66

662.68

2.23

2.35

23.2

25.6

0.98

1.07

0.33

0.38

the enhancements on the artificial blocks produce artificial

edges in the SR results. For instance, in Figure 7, these

blocks and artificial edges are labeled within red circles

for bicubic and VDSR. The diagonal edges are introduced

by SR enhancement on the artificial blocks from bicubic

enlargement, which are not present in the ground truth

image.

However, DWSR utilizes wavelet coefficients to take in

more structural correlation information into account which

does not enhance the artificial blocks and produces edges

more similar to the ground truth.

5. Conclusion

Our work presents a deep wavelet super resolution

(DWSR) technique that recovers the “missing details” by

using (low-resolution) wavelet sub-bands as inputs. DWSR

is significantly economical in the number of parameters

compared to most state-of-the-art methods and yet achieves

competitive or better results. We contend that this is

because wavelets provide an image representation that

naturally simplifies the mapping to be learned. While we

used the Haar wavelet, effects of different wavelet basis can

be examined in future work. Of particular interest could be

to learn the “optimal” wavelet basis for the SR task.
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