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Abstract

We introduce a new external denoising algorithm that

utilizes pre-learned transformations to accelerate filter cal-

culations during runtime. The proposed fast external de-

noising (FED) algorithm shares characteristics of the pow-

erful Targeted Image Denoising (TID) and Expected Patch

Log-Likelihood (EPLL) algorithms. By moving computa-

tionally demanding steps to an offline learning stage, the

proposed approach aims to find a balance between process-

ing speed and obtaining high quality denoising estimates.

We evaluate FED on three datasets with targeted databases

(text, face and license plates) and also on a set of generic

images without a targeted database. We show that, like TID,

the proposed approach is extremely effective when the trans-

formations are learned using a targeted database. We also

demonstrate that FED converges to competitive solutions

faster than EPLL and is orders of magnitude faster than

TID while providing comparable denoising performance.

1. Introduction

The advances in camera technology and storage has led

to an explosive growth in the amount of images and videos

captured for personal and professional uses such as for shar-

ing on social media sites or security purposes. Quite of-

ten, data is captured in poor conditions. Hence, there is

a constant demand for efficient restoration algorithms that

can post-process and correct for degradations in images and

videos captured by unideal sensors and/or in unideal en-

vironmental conditions. Denoising is such an important

restoration method that aims to reconstruct underlying clean

signals (images or videos) from observed noisy signals.

In the last decade, the field of image denoising has seen

tremendous advancements. One of the innovations intro-

duced during this time is patch-based denoising. These

methods divide an image into overlapping patches and re-

move noise by applying a denoising filter on a patch-by-

patch basis. Patch-based denoising methods can be broadly

divided into two classes – internal and external methods. In-

ternal methods are those algorithms that rely exclusively on

the information contained within an image when designing

the denoising filter. Popular methods that fall into this cat-

egory are non-local means (NLM) [3], BM3D [6], k-SVD

[8], SAFIR [2], NL-Bayes [13], DDID [12] and LPG-PCA

[25]. To denoise a patch in the noisy image (commonly

referred to as a query patch), these methods rely on infor-

mation contained in reference patches (i.e. other patches

that are similar to the query patch) within the noisy im-

age itself. Due to this reason, internal methods often suf-

fer when the noise level in an image is high and also when

denoising rare patches due to the lack of an adequate num-

ber of reference patches [7]. To ease these problems, ex-

ternal denoising methods were developed that restore noisy

patches using information from outside the given noisy im-

age. Methods in this category have taken many different ap-

proaches of leveraging external information. For instance,

the Expected Patch Log Likelihood (EPLL) algorithm [27]

denoises patches using a Gaussian Mixture Model (GMM)

prior learned on an external database of clean patches.

Other methods include learning mapping functions to map

noisy input patches to clean ones using multi-layer percep-

trons (MLP) [4], piecewise linear estimators [23, 20] and

straightforward adaptations of NLM, BM3D and k-SVD

[8, 26, 15].

Recently, Luo et al. [14, 15] proposed targeted image

denoising (TID) that utilizes targeted external databases.

This follows from the observation that a large generic

database does not necessarily contain enough useful in-

formation (and may often contain irrelevant information)

needed to denoise the noisy image of a specific domain.

Hence, instead of using a generic database, TID obtains ref-

erence patches from a targeted database that contains im-

ages relevant to the noisy image. For example, while de-

noising a face image, a targeted database is made up of

patches from other face images whereas while processing a

license plate image a targeted database will be constructed

using license plate images only. This approach of using tar-

geted databases tailored to particular domains and tasks can

be viewed in a similar category as a straightforward adapta-
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tion of task-driven image processing methods [16].

Although they alleviate the problems of the internal

methods, external (both generic and targeted) methods are

either slower to converge to an acceptable solution or are

computationally expensive. EPLL [27] is one of the fastest

external denoising algorithms but it is slow to produce a

good quality solution requiring many iterations with heav-

ily overlapped patches. Additionally, in each iteration of

EPLL, one has to calculate the patch log-likelihood of the

patch under the learned GMM prior. This involves calcu-

lating Mahalanobis distance using the covariance matrices

of each mixture component which is computationally more

complex than calculating Euclidean distances. The TID fil-

ter produces a higher quality image within 2-3 iterations but

is computationally expensive. Depending on the size of the

image and the database used, TID processing time is usually

orders of magnitude slower than EPLL. These issues make

these successful external denoising methods unsuitable for

processing videos and large images.

In this work, we propose a fast external denoising algo-

rithm that we refer to as FED. This algorithm is efficient

during runtime and can be trained with ease and flexibility.

2. Background and Related Work

The proposed approach falls under the external denois-

ing category. An external denoising algorithm uses infor-

mation from outside the noisy image when estimating the

denoising filter. In this section we provide a brief overview

of two external denoising algorithms that inspired the de-

velopment of our method.

2.1. Targeted Image Denoising Filter

Targeted Image Denoising (TID) is an external denoising

algorithm that utilizes a targeted database of clean patches

[14, 15]. A targeted database is chosen using prior knowl-

edge of the scene depicted in the image being denoised.

TID designs optimal denoising filters for each noisy

patch in the image by utilizing the given targeted database

maximally. To this end, for each noisy patch, TID retrieves

clean patches similar to the noisy patch and obtains an opti-

mal denoising filter for it by solving a group sparsity mini-

mization problem and using a localized Bayesian prior [15].

The data-adaptive nature of TID makes it very effective.

However, designing a new filter for each patch during run-

time can lead to excessive computational complexity as the

size of the noisy image increases. The complexity of TID is

also dependent on the size of the database and the number

of similar patches used for designing the filter. This makes

TID unsuitable for large images and videos.

2.2. Expected Patch Log Likelihood

Expected Patch Log Likelihood (EPLL) [27] is another

successful external denoising algorithm. EPLL models the

patch priors using Gaussian Mixture Models from an exter-

nal database of generic patches. These learned patch pri-

ors are used to denoise images efficiently. This simple yet

powerful algorithm has been shown to outperform both in-

ternal denoising algorithms such as BM3D [6] and external

denoising algorithms such as external-NLM. The proposed

method is similar to the EPLL algorithm, however the de-

noising filter proposed in this paper is more powerful when

a targeted database is available.

2.3. Generic vs. targeted database of patches

As metioned above, TID uses an external database com-

posed of patches from images that are visually similar to the

noisy image that are being denoised. Such a database that

closely resembles the characteristics of the test (noisy) im-

age is referred to as the targeted database. Whereas, the

Gaussian Mixture Models in the original EPLL study is

learned from a large database of patches (2 × 106 patches)

taken from images in the Berkeley Segmentation Database

[18]. A patch database that contains patches from a wide

range of images from various domains is termed a generic

database. In general, using a targeted database is better than

relying on a generic database.

Choosing an appropriate database with relevant images

can be a challenging problem in itself and is an active re-

search area. This direction of research requires a thorough

evaluation of recent developments in image retrieval and

grouping algorithms such as deep learning for image re-

trieval [11] and web scale photo clustering [10]. However,

a careful evaluation of database construction methods is out

of the scope of this study and we leave it for future work.

Although our algorithm is designed to be used with a tar-

geted database, we also include results from experiments

using a generic database to give the reader an idea of the

performance of our algorithm in this unideal setting.

3. Proposed Method

In this section, we describe the proposed denoising ap-

proach. It is based on a whole image denoising formulation

that is regularized by targeted patch-based denoising esti-

mate. First, let us define a model for the noisy image as

y = x+ η ∈ R
N where η is the i.i.d. Gaussian noise with

zero-mean and variance σ2, i.e., η ∼ N (0, σ2IN ). Let us

also define a patch extractor operator P i ∈ R
d×N that ex-

tracts i-th patch from x, i.e., P ix ∈ R
d is a d-dimensional

vector obtained by lexicographic ordering of
√
d×

√
d patch

extracted from the image x.

3.1. Whole image denoising

Given a noisy image y, the noise variance σ2, and a set

of targeted image patches A ∈ R
d× k of k patches, we pro-

pose to optimize the following cost function to estimate the
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underlying clean image, x.

min
x,{zi}

1

2σ2
‖x− y‖22 +

β

2

[
N∑

i=1

‖P ix−Azi‖
2

2 + λ‖zi‖
2

2

]

(1)

The above formulation ensures that the estimated image as

a whole closely resembles the original noisy image y (first

term), and the individual patches of the estimated image

can be expressed as a linear combination of the patches in

the patch-matrix A with minimum error. The optimization

parameter β controls the relative contribution of the patch-

by-patch reconstruction strategy of the second term to our

overall goal of denoising the whole image, and the param-

eter λ ensures the existence of feasible solutions for the set

of coefficient vectors {zi|i = 1 . . . N}.

The solution for the minimization in eq. (1) can be car-

ried out by alternating between: 1. Fixing x and finding op-

timal set of {zi} using the assumption that zi’s are mutually

independent and 2. Fixing {zi} and solving for x. We de-

fer the details of the first of these two steps (finding optimal

{zi}) to Section 3.2 below. Assuming we have the optimal

solutions for all coefficient vectors {zi|i = 1 . . . N}, we

will first discuss solving for the optimal x.

Fixing all {zi} and solving for optimal x leads to

x̂ =

(
1

σ2
IN + β

N∑

i=1

P T
i P i

)−1(
1

σ2
y + β

N∑

i=1

P T
i Azi

)

(2)

where the matrix P T
i performs the complementary opera-

tion of P i of placing a patch back as the i-th patch of the

image, and
∑N

i=1
P T

i P i counts the number of estimates

obtained for each pixel in the image. Therefore, the solution

of the whole image denoising shown in eq. (2) is simply a

weighted average of the given noisy image and the image

estimate obtained by denoising individual patches indepen-

dently.

3.2. Patch denoising

We now focus on the solution for optimal {zi} obtained

by fixing x. The optimal zi can be found by solving the

following minimization problem for each i separately:

min
zi

‖P ix−Azi‖22 + λ‖zi‖22 (3)

Here, the second term is added for regularization purposes

and to ensure a unique solution. The solution of eq. (3) has

a closed-form expression which leads to estimate Aẑi as:

Aẑi = A
(
ATA+ λIk

)−1

ATP ix (4)

If we let (U ,D,V ) be the singular value decomposition

(SVD) of A = UDV T , then eq. (4) simplifies to:

Aẑi = U
D2

D2 + λId

UTP ix (5)

where the division must be read as an element-wise division

of diagonal elements. By noticing that AAT = UD2UT ,

then we can rewrite eq. (5) as:

Aẑi = U
S

S + λId
UT

︸ ︷︷ ︸
Denoising Filter

P ix︸︷︷︸
Patch

(6)

where U and S are obtained via the eigen-decomposition of

AAT . Repeating the above steps for all i = {1 . . . N} will

provide denoised estimates for all of the patches in a given

noisy image. Here, the parameter λ is chosen such that it is

proportional to the noise variance in y (which is assumed to

be known a priori.)

3.2.1 Proposed choice for A matrix

Note that in eq. (3), we have opted for an ℓ2 constraint

over an ℓ1 constraint to facilitate a closed form solution

to our optimization problem. This choice is driven to en-

sure computational efficiency. However, the ℓ2-norm does

not promote sparsity and hence the reconstruction accuracy

depends heavily on the quality and relevance of patches in

matrix A. Therefore, it is not ideal to use the entire tar-

geted database in place of A. A valid alternate option is to

set matrix A = [p
1
, . . . ,pm] where p

1:m are the m closest

neighbors of P ix. According to Luo et al. [15], this option

leads to the optimal usage of the provided external database

and will yield a filter similar to the TID filter [14, 15] (the

main difference being the absence of the whole image de-

noising part in TID). On the contrary, it adds an undesirable

amount of computational complexity during runtime.

To alleviate these issues, we propose to find a set of an-

chor patches, {a1 . . .ak}, to represent the entire targeted

database. If the targeted database can be clustered in k

groups, then each anchor patch can be thought of as the

representative of one of these clusters. Then, a patch dic-

tionary is created for each of the anchor patches using their

respective m nearest neighbors. By taking the eigenvalue

decompositions of these k patch matrices, we can calculate

the corresponding U i and Si matrices, for all i ∈ 1 . . . k.

During runtime, a noisy query patch, q, can be denoised

using U i and Si that correspond to the anchor patch, ai,

that is most similar to q. Since the anchor points are in-

dependent of the noisy image, finding anchor patches and

calculating their corresponding denoising filters can be car-

ried out off-line; thus avoiding delays during runtime.

In practice, the fidelity of the data matrix A can be im-

proved by introducing weight matrix, i.e, by replacing A

with AW 1/2 [14, 15]. Here the weight matrix W =
1

α diag{w1, w2, . . . , wn} where wi = exp
(
−‖a−pi‖

2

h2

)
for

some user-tunable bandwidth parameter h, and α is a nor-

malization parameter so that the weights add up to 1. This

modification also diminishes the adverse effect of irrelevant
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neighbors (that are far away from the anchor patches) on the

learned denoising filters. Matrices U and S are obtained

off-line from the eigen-decomposition of AWAT .

3.3. Offline training and iterations

Thanks to anchor patches, the process of designing de-

noising filters is decoupled from the actual denoising step.

This enables us to split the proposed algorithm into an off-

line training stage and online denoising stage. The proposed

denoising algorithm is summarized in Algorithm 1.

Algorithm 1 Fast External Denoising

TRAINING PHASE (Offline)

Input:

D: Patch database

k: No. of anchors,

m: Max no. of neighbors,

h: bandwidth parameter

Output:

a1 . . .ak: Anchor patches

{(U1,S1) . . . }: Eigen-decomposition

1: Find k anchor patches from D ⊲ k-means clustering

2: for each ai ∈ {a1 . . .ak} do

3: Find m nearest neighbors from D → (p
1
. . .pm)

4: Form matrix A = [p
1
. . .pm]

5: Form weights: W = 1

α diag{w1, . . . ,wm}
where wj = exp

(
−‖ai−pj‖

2

h2

)
and α = Σjwj .

6: Compute eigen-decomposition of weighted matrix:

[U i,Si] = eig
(
AWAT

)

7: return {a1 . . .ak} and {(U1,S1) . . . (Uk,Sk)}

DENOISING PHASE (runtime)

Input:

y: noisy image

σ2: noise variance

a1 . . .ak: Anchor patches

{(U1,S1) . . . }: Eigen-decomposition

Output:

x̂: Denoised image estimate

1: for each noisy patch, q ∈ y, do

2: Find the index i of the closest patch ai to q

3: Compute the shrinkage matrix:

Λ =
(
diag

(
Si + σ2Id

))−1

diag(Si)

4: Perform patch denoising p̂ = U iΛUT
i q

5: Perform whole image denoising using eq. (2)

6: return denoised image x̂

For best results, each query patch should be matched to

an anchor patch that most closely resembles the underly-

ing clean patch. Since at first, the matching is carried out

with noisy patch itself, it is recommended that the runtime

algorithm is repeated for more than one iteration. Each sub-

sequent iteration uses patches from the previous image esti-

mate to find anchor patches and performs the whole image

denoising with progressively larger values of β in eq. (2).

4. Experimental Results

We present denoising results on three grayscale image

datasets containing text images, face images and license

plate images, respectively. We compare the performance of

the proposed approach against leading fast denoising algo-

rithms in both internal and external denoising categories. To

represent the internal denoising category, we choose BM3D

[6] as it is the fastest and most popular internal denoising

algorithm. For external denoising, we compare the perfor-

mance with EPLL [27] trained on both generic and targeted

priors. We also compare our results with TID to demon-

strate the trade-off between speed-up vs. quality achieved

by the proposed method. We tested these algorithms in low-

, mid- and high-noise settings by varying the variance (σ2)

of the additive Gaussian noise from
(

20

255

)2
to

(
80

255

)2
.

Algorithm settings and parameters

In all of our experiments, the size of the patches used is

set to 8× 8 and Euclidean metric is used to measure patch-

wise (dis)similarity. For BM3D1 and EPLL2, we used the

implementations provided by their respective authors.

The proposed algorithm is repeated for 3 iterations with

a patch overlap of 4, 6 and 7 pixels in the first, second

and third iterations, respectively (i.e. stride lengths Ns =
[4, 2, 1]). For EPLL and BM3D, we use the default parame-

ters and number of iterations prescribed by the original au-

thors in their corresponding implementations. In the cases

of EPLL and TID, we also show the results obtained and

time taken by these algorithms when the patch overlap pa-

rameter and the number of iterations are matched to FED.

For the three-iterations-EPLL, a 200 component GMM is

learned on the targeted database (tar-EPLL3) and the pa-

rameters λ and β that gave the best performance on the val-

idation sets were selected. These corresponded to λ = N
σ2

and β = 1

σ2 [1, 4, 16].

FED parameter selection: number of anchors, size of A

matrix and weighting

We use k-means clustering algorithm to identify a pre-

determined number (k) of anchor patches from the database.

Other methods relying on dictionary learning [1, 17] or high

1BM3D: http://www.cs.tut.fi/˜foi/GCF-BM3D/
2EPLL: https://people.csail.mit.edu/danielzoran/

epllcode.zip
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Figure 1. The effect of size of patch matrix, number of anchors,

and weighting of the patch matrix

dimensional regression trees [9] can also be used for finding

anchor patches from the database. For simplicity, we chose

to cluster the database into k clusters and use the means of

each cluster as our anchor patches. The number of anchor

patches k is a parameter that can be set via cross validation.

Once the anchor patches are identified, the next param-

eter that we have to set is the number of neighbors (m) for

each anchor patch. The chosen neighbors form the respec-

tive data matrices Ai for the anchors ai. As mentioned

above, we can weigh each neighbor selected for forming

the A matrix with a weight based on its similarity to its cor-

responding anchor patch.

Figure 1 illustrates the average denoising performance

obtained on the validation datasets of text, face and license

image datasets with varying number of anchor patches (k),

the effect of the weighting and different number of neigh-

bors (m) included in an anchor’s A matrix. The bar graph

shows the variations in performance when k is set to 5000

and m is varied from 16 to 1024 and the h = [0.2, 0.6, 0.9]
in the weighting matrix (used in AWAT ) or with no

weighting. For brevity, we only display the best results

obtained for k = 200 and k = 1000 with above men-

tioned values of m and h. For the three datasets with tar-

geted databases, the best average PSNR is obtained when

k = 5000, m = 128 and h = 0.6.

In the following, we will present the denoising results

and discuss the characteristics of the datasets we used.

4.1. Text denoising

Text image dataset [15] contains images cropped from

documents. These images have a clean white background

with black text and display simple edge structures and al-

most no texture. The test image to be denoised and database

images vary in font styles and sizes. Some examples from

(a) (b) (c) (d) (e)

Figure 2. Sample images from text image dataset [15]. Experi-

ments are conducted on noise corrupted versions of image 2(a).

The images 2(b)–2(e) are four examples out of nine clean text im-

ages that are used as the targeted database.

(a) (b) (c) (d) (e)

Figure 3. Sample images from face image dataset [19]. Figure 3(a)

shows one of ten test images that were used in our experiments.

The images 3(b)–3(e) are four examples out of 80 face images that

make up the targeted database.

the text image dataset are shown in Figure 2. Out of 14

images in our dataset, the targeted database is created us-

ing nine images, four are used as a validation set and one

image is used for testing. Since the denoising experiments

reported for this dataset are conducted on only one image,

we average our results over 5 independent trials with differ-

ent noise realizations for each noise level. This is a simple

setting to show the effect of a near perfect targeted database.

Table 1 reports the quantitative results in terms of PSNR

and SSIM [21] of the proposed FED algorithm compared to

other competing fast denoising algorithms. FED algorithm

trained on a targeted database provides much higher PSNR

and SSIM than BM3D and EPLL in all the noise level set-

tings tested. The EPLL algorithm trained on the targeted

dataset and run with default parameters (5 iterations) per-

formed better than generic EPLL. Still, the proposed algo-

rithm outperformed targeted EPLL consistently by a margin

ranging from 5-7 dB in low-,mid- and high-noise settings.

The best performing algorithm on this dataset, the TID algo-

rithm, is three orders of magnitude slower. The PSNR gains

of TID over the proposed FED drop quickly from 5dB for

σ = 20

255
to under 1dB for σ = 40

255
. We argue that compro-

mising a small amount of quality to gain such an enormous

speed-up is highly warranted. Note that such computational

complexity makes TID unsuitable for denoising large im-

ages/videos, whereas FED is a natural fit for these domains.

4.2. Face image denoising

Face image denoising experiments were conducted on a

subset of images taken from FEI face dataset [19]. It con-

tains one image per person and has no overlap between the

set of images used as the noisy images (test set), validation
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Table 1. Comparison of average PSNR, SSIM and time taken by each of the algorithms to denoise a text image of size 107 × 104 pixels.

The speed-up is calculated with respect to the proposed FED algorithm.

σ× 255

BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations

Ns = [6, 4] Ns = [1] Ns = [1] Ns = [4, 2, 1] Ns = [4, 2, 1] Ns = [4, 2, 1]

PSNR: 20 28.64 28.04 30.38 29.92 39.37 35.65

40 23.14 22.95 25.51 24.96 33.00 31.95

60 19.27 20.07 22.67 22.09 29.31 28.80

80 17.59 18.27 20.80 20.11 26.52 25.92

SSIM: 20 0.9856 0.9796 0.9910 0.9878 0.9966 0.9950

40 0.9434 0.9303 0.9704 0.9533 0.9850 0.9843

60 0.8392 0.8705 0.9368 0.9053 0.9645 0.9607

80 0.7583 0.7920 0.8873 0.8282 0.9229 0.9053

Time (seconds): - 0.12s 7.06s 6.83s 1.55s 2273.01s 1.39s

Speed up: - x0.08 x5.09 x4.91 x1.12 x1635.26 x1.00

Table 2. Same as Table 1 but for 10 face images of size 90× 65 from FEI face dataset [19].

σ× 255

BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations

Ns = [6, 4] Ns = [1] Ns = [1] Ns = [4, 2, 1] Ns = [4, 2, 1] Ns = [4, 2, 1]

PSNR: 20 31.37 31.40 31.99 31.15 32.26 32.11

40 27.63 27.86 28.32 27.09 28.51 28.20

60 25.70 25.68 26.08 24.67 26.09 25.60

80 24.37 24.29 24.56 23.00 24.27 23.73

SSIM: 20 0.9054 0.9048 0.9160 0.8860 0.9201 0.9164

40 0.8176 0.8136 0.8283 0.7554 0.8273 0.8094

60 0.7576 0.7477 0.7612 0.6381 0.7524 0.7193

80 0.6973 0.6859 0.6964 0.5483 0.6741 0.6288

Time (seconds): - 0.05 2.74 2.73 0.87 878.20 0.71

Speed up: - x0.07 x3.84 x3.83 x1.23 x1236.90 x1.00

(a) Original (b) Noisy

(σ =
30

255
)

(c) BM3D

(28.96, 0.8572)

(d) EPLL

(28.82, 0.8518)

(e) tar-EPLL

(29.18, 0.8652)

(f) tar-EPLL3

(28.42, 0.8311)

(g) TID

(29.17, 0.8608)

(h) FED

(28.98, 0.8533)

Figure 4. Visual and objective comparison of denoising performance of a face image. The objective evaluation metrics of each case is

shown in parenthesis in (PSNR, SSIM) format.

set and the targeted database. Out of the 100 images of dis-

tinct individuals, we used 10 individuals for creating noisy

images, 10 for validation purposes and the targeted database

contained images of a different set of 80 individuals. Since

there is no overlap between the individuals in these different

partitions, the images to be denoised are not a perfect match

to the ones used in the targeted database. This setting also

displays variations in lighting, contrast, gender, etc. Some

examples from this dataset are shown in Figure 3.

The results obtained on the face images are shown in Ta-
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Table 3. Same as Table 1 but for 10 license images of average size 44× 92 cropped from the Caltech cars (1999) dataset [22].

σ× 255

BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations

Ns = [6, 4] Ns = [1] Ns = [1] Ns = [4, 2, 1] Ns = [4, 2, 1] Ns = [4, 2, 1]

PSNR: 20 26.15 25.99 26.87 26.55 25.27 25.87

40 21.66 21.86 22.98 22.53 23.11 22.83

60 19.16 19.52 20.70 20.13 21.02 20.89

80 17.68 17.87 18.98 18.32 19.48 19.41

SSIM: 20 0.9330 0.9366 0.9476 0.9432 0.9223 0.9260

40 0.8270 0.8452 0.8803 0.8706 0.8666 0.8640

60 0.6984 0.7306 0.8009 0.7869 0.7885 0.7954

80 0.6022 0.6322 0.7336 0.7102 0.7349 0.7480

Time (seconds): - 0.03 1.74 1.75 0.46 311.97 0.45

Speed up: - x0.07 x3.90 x3.91 x1.02 x693.27 x1.00

(a) (b) (c) (d) (e)

Figure 5. Sample images from the license plate dataset created

from Caltech Cars (1999) [22]. Figure 5(a) shows one of ten test

images that were used in our experiments. The images 5(b)–5(e)

show four examples out of 90 images from the targeted database.

Table 4. Same as Table 1 but for 100 test images of size 321×481
of the BSDS dataset [18].

σ
×

255

BM3D EPLL EPLL3 FED

2 iters 5 iters 3 iters 3 iters

Ns=[6, 4] [1] [4, 2, 1] [4, 2, 1]

PSNR: 30 27.57 27.66 26.95 26.87

40 26.30 26.43 25.56 25.30

50 25.45 25.51 24.51 23.95

SSIM: 30 0.7607 0.7717 0.7257 0.7155

40 0.7101 0.7175 0.6494 0.6308

50 0.6704 0.6729 0.5843 0.5532

Time (s): - 1.66s 83.38s 19.34s 8.99s

Speed up: - x0.18 x9.27 x2.15 x1.00

ble 2. Quantitatively, FED obtains comparable results as

those obtained from BM3D and different versions of EPLL.

However, FED is almost 4 times faster than the better-

performing EPLL variants. In addition, a visual comparison

of results obtained on one of the images, shown in Figure

4, indicates that FED algorithm provides a more visually

pleasing denoised estimate.

4.3. License plate denoising

License plate dataset was created by cropping license

plates from the Caltech Cars (1999) dataset [22]. This

dataset was originally collected for testing object category

discovery algorithms and contains images of rear views of

cars from Caltech parking lots. Therefore, the license plate

images, which are only a small part of the car images, natu-

rally contain small amounts of noise and display large vari-

ations in lighting and contrast. We include the results from

this setting to demonstrate the performance of the proposed

FED algorithm on realistic settings with targeted datasets

containing similar but not identical images.

Table 3 shows the quantitative results obtained on this

dataset using the different denoising algorithms. The PSNR

and SSIM values of BM3D and EPLL are better than FED

for almost all noise settings. However, FED does better un-

der the highest noise setting we tested. Although quantita-

tively slightly under par, Figure 6 indicates that FED results

are consistently better visually than other estimates.

4.4. Generic image denoising on BSDS dataset

As a limiting case, we also include the results obtained

by FED on a set of generic images with a generic database.

We use the Berkeley Segmentation Dataset (BSDS) [18].

The database of patches was created by randomly sampling

2 million patches from BSDS training set images. The de-

noising experiments are conducted on the BSDS test set

consisting of 100 images. The results reported in Table 4

are averaged over all 100 images for each noise setting.

Since FED is designed to work well with targeted

databases, as expected, BM3D and EPLL achieve better

PSNR and SSIM measures in this dataset. However, FED

results are comparable and are obtained in one-ninth of the

time taken by EPLL. For visual comparison, we have in-

cluded the results of one of the test images in Figure 7.

5. Conclusion

In this paper, we presented a new external denoising al-
gorithm that is more efficient than the current state-of-the-
art methods. The proposed algorithm is faster during run-
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(a) Original

(b) Noisy (σ =
20

255
) (c) BM3D

(25.77, 0.9497)

(d) EPLL

(25.51, 0.9508)

(e) tar-EPLL

(26.84, 0.9624)

(f) tar-EPLL3

(26.47, 0.9586)

(g) TID

(25.37, 0.9525)

(h) FED

(26.47, 0.9541)

(i) Noisy (σ =
50

255
) (j) BM3D

(19.48, 0.7977)

(k) EPLL

(19.64, 0.8295)

(l) tar-EPLL

(21.36, 0.8801)

(m) tar-EPLL3

(20.99, 0.8734)

(n) TID

(22.72, 0.9101)

(o) FED

(21.99, 0.8833)

(p) Noisy (σ =
80

255
) (q) BM3D

(17.07, 0.6766)

(r) EPLL

(16.97, 0.6862)

(s) tar-EPLL

(18.72, 0.7885)

(t) tar-EPLL3

(18.26, 0.7826)

(u) TID

(19.43, 0.7840)

(v) FED

(19.81, 0.8183)

Figure 6. Visual and objective comparison of denoising performance of the same license image under different noise levels. The objective

evaluation metrics of each case is shown in parenthesis in (PSNR, SSIM) format.

(a) Original (b) Noisy (σ =
30

255
) (c) BM3D

(28.59, 0.8300)

(d) EPLL

(28.54, 0.8262)

(e) Generic FED

(27.25, 0.7323)

Figure 7. Visual and objective comparison of denoising performance of one of the BSDS test images using a generic database created from

BSDS training set. The objective evaluation metrics of each case is shown in parenthesis in (PSNR, SSIM) format.

time and achieves better performance when used with tar-
geted databases than EPLL, the current state-of-the-art ef-
ficient external denoising algorithm. It is also orders of
magnitude faster than the powerful state-of-the-art TID al-
gorithm without compromising much in terms of quality.
This balance between speed and quality was achieved by
transferring computationally demanding steps of designing
optimal filters to an offline training step. Specifically, the in-
formation from a targeted database is extracted and stored
in pre-learned transformations that are used directly dur-
ing runtime. The proposed approach is extremely pow-
erful when the transformation matrices are learned using

a targeted database. However, when trained on a generic
dataset the algorithm is unable to reconstruct texture de-
tails leading to over-smoothing, as can be observed in Fig-
ure 7. This can be avoided to a limited extent by increas-
ing the number of anchor points so that detailed texture
patches are properly represented. Another approach is us-
ing sophisticated algorithms (e.g. dictionary learning) in
place of k-means to identify a more representative set of
anchor patches. Future work will focus on a thorough com-
parison of our approach to deep learning based methods
[5, 24] and making the algorithm more robust to database
mismatch.
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